2 research outputs found

    A Cosmological Fireball with 16% Gamma-Ray Radiative Efficiency

    No full text
    Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. How efficiently the jet converts its energy to radiation is a long-standing problem, which is poorly constrained. The standard model invokes a relativistic fireball with a bright photosphere emission component. A definitive diagnosis of GRB radiation components and the measurement of GRB radiative efficiency require prompt emission and afterglow data, with high resolution and wide band coverage in time and energy. Here, we present a comprehensive temporal and spectral analysis of the TeV-emitting bright GRB 190114C. Its fluence is one of the highest for all the GRBs that have been detected so far, which allows us to perform a high-resolution study of the prompt emission spectral properties and their temporal evolutions, down to a timescale of about 0.1 s. We observe that each of the initial pulses has a thermal component contributing ∼20% of the total energy and that the corresponding temperature and inferred Lorentz factor of the photosphere evolve following broken power-law shapes. From the observation of the nonthermal spectra and the light curve, the onset of the afterglow corresponding to the deceleration of the fireball is considered to start at ∼6 s. By incorporating the thermal and nonthermal observations, as well as the photosphere and synchrotron radiative mechanisms, we can directly derive the fireball energy budget with little dependence on hypothetical parameters, measuring a ∼16% radiative efficiency for this GRB. With the fireball energy budget derived, the afterglow microphysics parameters can also be constrained directly from the data

    The case for a minute-long merger-driven gamma-ray burst from fast-cooling synchrotron emission

    No full text
    For decades, gamma-ray bursts (GRBs) have been broadly divided into long- and short-duration bursts, lasting more or less than 2 s, respectively. However, this dichotomy does not perfectly map to the two progenitor channels that are known to produce GRBs: mergers of compact objects (merger GRBs) or the collapse of massive stars (collapsar GRBs). In particular, the merger GRB population may also include bursts with a short, hard <2 s spike and subsequent longer, softer extended emission. The recent discovery of a kilonova—the radioactive glow of heavy elements made in neutron star mergers—in the 50-s-duration GRB 211211A further demonstrates that mergers can drive long, complex GRBs that mimic the collapsar population. Here we present a detailed temporal and spectral analysis of the high-energy emission of GRB 211211A. We demonstrate that the emission has a purely synchrotron origin, with both the peak and cooling frequencies moving through the γ-ray band down to X-rays, and that the rapidly evolving spectrum drives the extended emission signature at late times. The identification of such spectral evolution in a merger GRB opens avenues to diagnostics of the progenitor type
    corecore