844 research outputs found
Steering a quantum system over a Schroedinger bridge
A new approach to the steering problem for quantum systems relying on
Nelson's stochastic mechanics and on the theory of Schroedinger bridges is
presented. The method is illustrated by working out a simple Gaussian example.Comment: Proc. Intern. Conf. on the Mathematical Theory of Networks and
Systems, Perpignan, France, June 2000, CD-ROM, paper nr. 268, M. Fliess and
A. El Jai Ed
The seesaw portal in testable models of neutrino masses
A Standard Model extension with two Majorana neutrinos can explain the
measured neutrino masses and mixings, and also account for the
matter-antimatter asymmetry in a region of parameter space that could be
testable in future experiments. The testability of the model relies to some
extent on its minimality. In this paper we address the possibility that the
model might be extended by extra generic new physics which we parametrize in
terms of a low-energy effective theory. We consider the effects of the
operators of the lowest dimensionality, , and evaluate the upper bounds on
the coefficients so that the predictions of the minimal model are robust. One
of the operators gives a new production mechanism for the heavy neutrinos at
LHC via higgs decays. The higgs can decay to a pair of such neutrinos that,
being long-lived, leave a powerful signal of two displaced vertices. We
estimate the LHC reach to this process.Comment: 19 pages, 11 figure
Interacting quintessence and the coincidence problem
We investigate the role of a possible coupling of dark matter and dark
energy. In particular, we explore the consequences of such an interaction for
the coincidence problem, i.e., for the question, why the energy densities of
dark matter and dark energy are of the same order just at the present epoch. We
demonstrate, that, with the help of a suitable coupling, it is possible to
reproduce any scaling solution , where is the
scale factor of the Robertson-Walker metric and is a constant parameter.
and are the densities of dark energy and dark matter,
respectively. Furthermore, we show that an interaction between dark matter and
dark energy can drive the transition from an early matter dominated era to a
phase of accelerated expansion with a stable, stationary ratio of the energy
densities of both components.Comment: 3 pages, contribution to the Tenth Marcel Grossmann Meeting, Rio de
Janeiro, 20-26 July 200
The seesaw path to leptonic CP violation
Future experiments such as SHiP and high-intensity colliders will
have a superb sensitivity to heavy Majorana neutrinos with masses below .
We show that the measurement of the mixing to electrons and muons of one such
state could imply the discovery of leptonic CP violation in the context of
seesaw models. We quantify in the minimal model the CP discovery potential of
these future experiments, and demonstrate that a 5 CL discovery of
leptonic CP violation would be possible in a very significant fraction of
parameter space.Comment: An error has been fixed, main conclusions unchange
Long-distance structure of the X(3872)
We investigate heavy quark symmetries for heavy meson hadronic molecules, and
explore the consequences of assuming the X(3872) and as an
isoscalar and an isovector hadronic molecules,
respectively. The symmetry allows to predict new hadronic molecules, in
particular we find an isoscalar bound state with a mass
about 10580 MeV and the isovector charmonium partners of the and
the states. Next, we study the
three body decay. This decay mode is more sensitive to the long-distance
structure of the X(3872) resonance than its and
decays, which are mainly controlled by the short distance part of the X(3872)
molecular wave function. We discuss the final state
interactions, which in some situations become quite important. Indeed in these
cases, a precise measurement of this partial decay width could provide precise
information on the interaction strength between the charm
mesons.Comment: Talk presented at the "XI International Conference on Hyperons, Charm
and Beauty Hadrons (BEACH 2014)", Birmingham (U.K.), July 201
Hellinger vs. Kullback-Leibler multivariable spectrum approximation
In this paper, we study a matricial version of the Byrnes-Georgiou-Lindquist
generalized moment problem with complexity constraint. We introduce a new
metric on multivariable spectral densities induced by the family of their
spectral factors which, in the scalar case, reduces to the Hellinger distance.
We solve the corresponding constrained optimization problem via duality theory.
A highly nontrivial existence theorem for the dual problem is established in
the Byrnes-Lindquist spirit. A matricial Newton-type algorithm is finally
provided for the numerical solution of the dual problem. Simulation indicates
that the algorithm performs effectively and reliably.Comment: 32 pages, 1 figur
The Coincidence Problem in Holographic f(R) Gravity
It is well-known that gravity models formulated in Einstein conformal
frame are equivalent to Einstein gravity together with a minimally coupled
scalar field. In this case, the scalar field couples with the matter sector and
the coupling term is given by the conformal factor. We apply the holographic
principle to such interacting models. In a spatially flat universe, we show
that the Einstein frame representation of models leads to a constant
ratio of energy densities of dark matter to dark energy.Comment: 10 pages, no figure
- …