844 research outputs found

    Steering a quantum system over a Schroedinger bridge

    Full text link
    A new approach to the steering problem for quantum systems relying on Nelson's stochastic mechanics and on the theory of Schroedinger bridges is presented. The method is illustrated by working out a simple Gaussian example.Comment: Proc. Intern. Conf. on the Mathematical Theory of Networks and Systems, Perpignan, France, June 2000, CD-ROM, paper nr. 268, M. Fliess and A. El Jai Ed

    The seesaw portal in testable models of neutrino masses

    Full text link
    A Standard Model extension with two Majorana neutrinos can explain the measured neutrino masses and mixings, and also account for the matter-antimatter asymmetry in a region of parameter space that could be testable in future experiments. The testability of the model relies to some extent on its minimality. In this paper we address the possibility that the model might be extended by extra generic new physics which we parametrize in terms of a low-energy effective theory. We consider the effects of the operators of the lowest dimensionality, d=5d=5, and evaluate the upper bounds on the coefficients so that the predictions of the minimal model are robust. One of the operators gives a new production mechanism for the heavy neutrinos at LHC via higgs decays. The higgs can decay to a pair of such neutrinos that, being long-lived, leave a powerful signal of two displaced vertices. We estimate the LHC reach to this process.Comment: 19 pages, 11 figure

    Interacting quintessence and the coincidence problem

    Full text link
    We investigate the role of a possible coupling of dark matter and dark energy. In particular, we explore the consequences of such an interaction for the coincidence problem, i.e., for the question, why the energy densities of dark matter and dark energy are of the same order just at the present epoch. We demonstrate, that, with the help of a suitable coupling, it is possible to reproduce any scaling solution ρXρMaξ\rho_X \propto \rho_M a^\xi, where aa is the scale factor of the Robertson-Walker metric and ξ\xi is a constant parameter. ρX\rho_X and ρM\rho_M are the densities of dark energy and dark matter, respectively. Furthermore, we show that an interaction between dark matter and dark energy can drive the transition from an early matter dominated era to a phase of accelerated expansion with a stable, stationary ratio of the energy densities of both components.Comment: 3 pages, contribution to the Tenth Marcel Grossmann Meeting, Rio de Janeiro, 20-26 July 200

    The seesaw path to leptonic CP violation

    Get PDF
    Future experiments such as SHiP and high-intensity e+ee^+ e^- colliders will have a superb sensitivity to heavy Majorana neutrinos with masses below MZM_Z. We show that the measurement of the mixing to electrons and muons of one such state could imply the discovery of leptonic CP violation in the context of seesaw models. We quantify in the minimal model the CP discovery potential of these future experiments, and demonstrate that a 5σ\sigma CL discovery of leptonic CP violation would be possible in a very significant fraction of parameter space.Comment: An error has been fixed, main conclusions unchange

    Long-distance structure of the X(3872)

    Get PDF
    We investigate heavy quark symmetries for heavy meson hadronic molecules, and explore the consequences of assuming the X(3872) and Zb(10610)Z_b(10610) as an isoscalar DDˉD\bar D^* and an isovector BBˉB\bar B^* hadronic molecules, respectively. The symmetry allows to predict new hadronic molecules, in particular we find an isoscalar 1++1^{++} BBˉB\bar B^* bound state with a mass about 10580 MeV and the isovector charmonium partners of the Zb(10610)Z_b(10610) and the Zb(10650)Z_b(10650) states. Next, we study the X(3872)D0Dˉ0π0X(3872) \to D^0 \bar D^0\pi^0 three body decay. This decay mode is more sensitive to the long-distance structure of the X(3872) resonance than its J/ψππJ/\psi\pi\pi and J/ψ3πJ/\psi3\pi decays, which are mainly controlled by the short distance part of the X(3872) molecular wave function. We discuss the D0Dˉ0D^0 \bar D^0 final state interactions, which in some situations become quite important. Indeed in these cases, a precise measurement of this partial decay width could provide precise information on the interaction strength between the D()Dˉ()D^{(*)}\bar D^{(*)} charm mesons.Comment: Talk presented at the "XI International Conference on Hyperons, Charm and Beauty Hadrons (BEACH 2014)", Birmingham (U.K.), July 201

    Hellinger vs. Kullback-Leibler multivariable spectrum approximation

    Full text link
    In this paper, we study a matricial version of the Byrnes-Georgiou-Lindquist generalized moment problem with complexity constraint. We introduce a new metric on multivariable spectral densities induced by the family of their spectral factors which, in the scalar case, reduces to the Hellinger distance. We solve the corresponding constrained optimization problem via duality theory. A highly nontrivial existence theorem for the dual problem is established in the Byrnes-Lindquist spirit. A matricial Newton-type algorithm is finally provided for the numerical solution of the dual problem. Simulation indicates that the algorithm performs effectively and reliably.Comment: 32 pages, 1 figur

    The Coincidence Problem in Holographic f(R) Gravity

    Full text link
    It is well-known that f(R)f(R) gravity models formulated in Einstein conformal frame are equivalent to Einstein gravity together with a minimally coupled scalar field. In this case, the scalar field couples with the matter sector and the coupling term is given by the conformal factor. We apply the holographic principle to such interacting models. In a spatially flat universe, we show that the Einstein frame representation of f(R)f(R) models leads to a constant ratio of energy densities of dark matter to dark energy.Comment: 10 pages, no figure
    corecore