898 research outputs found

    Band splitting and relative spin alignment in bilayer systems

    Full text link
    Influence of relative spin alignment on the band splitting and magnetic excitations in the bilayer correlated systems is studied. Splitting occures to be large or small depending on orientation of staggered spins of layers. Change of the ground state configuration with doping is shown. Behavior of the bilayer splitting in Bi-based cuprate allows to suppose that superconducting transition is accompanied by transformation of spin configuration of system.Comment: 9 pages, 3 figure

    Proton configurations in the hydrogen bonds of KH2PO4 as seen by resonant x-ray diffraction

    Full text link
    KH2PO4 (KDP) belongs to the class of hydrogen-bonded ferroelectrics, whose paraelectric to ferroelectric phase transition is driven by the ordering of the protons in the hydrogen bonds. We demonstrate that forbidden reflections of KDP, when measured at an x-ray absorption edge, are highly sensitive to the asymmetry of proton configurations. The change of average symmetry caused by the "freezing" of the protons during the phase transition is clearly evidenced. In the paraelectric phase, we identify in the resonant spectra of the forbidden reflections a contribution related to the transient proton configurations in the hydrogen bonds, which violates the high average symmetry of the sites of the resonant atoms. The analysis of the temperature dependence reveals a change of relative probabilities of the different proton configurations. They follow the Arrhenius law, and the activation energies of polar and Slater configurations are 18.6 and 7.3 meV, respectively

    The Fermi surface reconstruction in stripe phases of cuprates

    Full text link
    Mean-field study of the stripe structures is conducted for a hole-doped Hubbard model. For bond-directed stripes, the Fermi surface consists of segments of an open surface and the boundaries of the hole pockets which appear in the diagonal region of momenta under certain conditions. Segments of the first type are due to one-dimensional bands of states localized on the domain walls. The relation of bands to the doping and temperature dependences of the Hall constant is discussed. In connection with the observation of quantum magnetic oscillations, a systematic search for the electron pockets has been carried out. It is shown that the formation of such pockets in bilayer models is quite possible.Comment: 4 pages, 3 figure
    corecore