28 research outputs found
Development of a New Tacaribe Arenavirus Infection Model and Its Use to Explore Antiviral Activity of a Novel Aristeromycin Analog
Background
A growing number of arenaviruses can cause a devastating viral hemorrhagic fever (VHF) syndrome. They pose a public health threat as emerging viruses and because of their potential use as bioterror agents. All of the highly pathogenic New World arenaviruses (NWA) phylogenetically segregate into clade B and require maximum biosafety containment facilities for their study. Tacaribe virus (TCRV) is a nonpathogenic member of clade B that is closely related to the VHF arenaviruses at the amino acid level. Despite this relatedness, TCRV lacks the ability to antagonize the host interferon (IFN) response, which likely contributes to its inability to cause disease in animals other than newborn mice. Methodology/Principal Findings
Here we describe a new mouse model based on TCRV challenge of AG129 IFN-α/β and -γ receptor-deficient mice. Titration of the virus by intraperitoneal (i.p.) challenge of AG129 mice resulted in an LD50 of ∼100 fifty percent cell culture infectious doses. Virus replication was evident in the serum, liver, lung, spleen, and brain 4–8 days after inoculation. MY-24, an aristeromycin derivative active against TCRV in cell culture at 0.9 µM, administered i.p. once daily for 7 days, offered highly significant (P\u3c0.001) protection against mortality in the AG129 mouse TCRV infection model, without appreciably reducing viral burden. In contrast, in a hamster model of arenaviral hemorrhagic fever based on challenge with clade A Pichinde arenavirus, MY-24 did not offer significant protection against mortality. Conclusions/Significance
MY-24 is believed to act as an inhibitor of S-adenosyl-L-homocysteine hydrolase, but our findings suggest that it may ameliorate disease by blunting the effects of the host response that play a role in disease pathogenesis. The new AG129 mouse TCRV infection model provides a safe and cost-effective means to conduct early-stage pre-clinical evaluations of candidate antiviral therapies that target clade B arenaviruses
Frequency and genotypic distribution of GB virus C (GBV-C) among Colombian population with Hepatitis B (HBV) or Hepatitis C (HCV) infection
<p>Abstract</p> <p>Background</p> <p>GB virus C (GBV-C) is an enveloped positive-sense ssRNA virus belonging to the <it>Flaviviridae </it>family. Studies on the genetic variability of the GBV-C reveals the existence of six genotypes: genotype 1 predominates in West Africa, genotype 2 in Europe and America, genotype 3 in Asia, genotype 4 in Southwest Asia, genotype 5 in South Africa and genotype 6 in Indonesia. The aim of this study was to determine the frequency and genotypic distribution of GBV-C in the Colombian population.</p> <p>Methods</p> <p>Two groups were analyzed: i) 408 Colombian blood donors infected with HCV (n = 250) and HBV (n = 158) from Bogotá and ii) 99 indigenous people with HBV infection from Leticia, Amazonas. A fragment of 344 bp from the 5' untranslated region (5' UTR) was amplified by nested RT PCR. Viral sequences were genotyped by phylogenetic analysis using reference sequences from each genotype obtained from GenBank (n = 160). Bayesian phylogenetic analyses were conducted using Markov chain Monte Carlo (MCMC) approach to obtain the MCC tree using BEAST v.1.5.3.</p> <p>Results</p> <p>Among blood donors, from 158 HBsAg positive samples, eight 5.06% (n = 8) were positive for GBV-C and from 250 anti-HCV positive samples, 3.2%(n = 8) were positive for GBV-C. Also, 7.7% (n = 7) GBV-C positive samples were found among indigenous people from Leticia. A phylogenetic analysis revealed the presence of the following GBV-C genotypes among blood donors: 2a (41.6%), 1 (33.3%), 3 (16.6%) and 2b (8.3%). All genotype 1 sequences were found in co-infection with HBV and 4/5 sequences genotype 2a were found in co-infection with HCV. All sequences from indigenous people from Leticia were classified as genotype 3. The presence of GBV-C infection was not correlated with the sex (p = 0.43), age (p = 0.38) or origin (p = 0.17).</p> <p>Conclusions</p> <p>It was found a high frequency of GBV-C genotype 1 and 2 in blood donors. The presence of genotype 3 in indigenous population was previously reported from Santa Marta region in Colombia and in native people from Venezuela and Bolivia. This fact may be correlated to the ancient movements of Asian people to South America a long time ago.</p
Characterization of Higher-order . . .
T.angent bundles of higher order are the framework on which the higher order Lagrangian theories are developed. Moreover, almost tangent manifolds of higher order have been shown to be relevant in singular Lagrangian theories. The purpose of this paper is to prove that under some global hypotheses a higher order integrable almost tangent manifold is diffeomorphic to the tangent bundle of the same order of some manifold. An application to the reduction of singular Lagrangians is given
Quantitative titanium imaging in fish tissues exposed to titanium dioxide nanoparticles by laser ablation-inductively coupled plasma-mass spectrometry
Imaging studies by laser ablation–inductively coupled plasma mass spectrometry have been successfully developed to obtain qualitative and quantitative information on the presence/distribution of titanium (ionic titanium and/or titanium dioxide nanoparticles) in sea bream tissues (kidney, liver, and muscle) after exposure assays with 45-nm citrate-coated titanium dioxide nanoparticles. Laboratory-produced gelatine standards containing ionic titanium were used as a calibration strategy for obtaining laser ablation–based images using quantitative (titanium concentrations) data. The best calibration strategy consisted of using gelatine-based titanium standards (from 0.1 to 2.0 μg g−1) by placing 5.0-μL drops of the liquid gelatine standards onto microscope glass sample holders. After air drying at room temperature good homogeneity of the placed drops was obtained, which led to good repeatability of measurements (calibration slope of 4.21 × 104 ± 0.39 × 104, n = 3) and good linearity (coefficient of determination higher than 0.990). Under the optimised conditions, a limit of detection of 0.087 μg g−1 titanium was assessed. This strategy allowed to locate prominent areas of titanium in the tissues as well as to quantify the bioaccumulated titanium and a better understanding of titanium dioxide nanoparticle spatial distribution in sea bream tissues. Graphical abstract: [Figure not available: see fulltext.