2,569 research outputs found

    Magic angle effects in the interlayer magnetoresistance of quasi-one-dimensional metals due to interchain incoherence

    Get PDF
    The dependence of the magnetoresistance of quasi-one-dimensional metals on the direction of the magnetic field show dips when the field is tilted at the so called magic angles determined by the structural dimensions of the materials. There is currently no accepted explanation for these magic angle effects. We present a possible explanation. Our model is based on the assumption that, the intralayer transport in the second most conducting direction has a small contribution from incoherent electrons. This incoherence is modelled by a small uncertainty in momentum perpendicular to the most conducting (chain) direction. Our model predicts the magic angles seen in interlayer transport measurements for different orientations of the field. We compare our results to predictions by other models and to experiment.Comment: 7 pages, 3 figures, Submitted To Phys. Rev.

    Electronic Structure of Three-Dimensional Superlattices Subject to Tilted Magnetic Fields

    Full text link
    Full quantum-mechanical description of electrons moving in 3D structures with unidirectional periodic modulation subject to tilted magnetic fields requires an extensive numerical calculation. To understand magneto-oscillations in such systems it is in many cases sufficient to use the quasi-classical approach, in which the zero-magnetic-field Fermi surface is considered as a magnetic-field-independent rigid body in k-space and periods of oscillations are related to extremal cross-sections of the Fermi surface cut by planes perpendicular to the magnetic-field direction. We point out cases where the quasi-classical treatment fails and propose a simple tight-binding fully-quantum-mechanical model of the superlattice electronic structure.Comment: 8 pages, 7 figures, RevTex, submitted to Phys. Rev.

    Relativistic dissipative hydrodynamics with extended matching conditions for ultra-relativistic heavy-ion collisions

    Full text link
    Recently we proposed a novel approach to the formulation of relativistic dissipative hydrodynamics by extending the so-called matching conditions in the Eckart frame [Phys. Rev. {\bf C 85}, (2012) 14906]. We extend this formalism further to the arbitrary Lorentz frame. We discuss the stability and causality of solutions of fluid equations which are obtained by applying this formulation to the Landau frame, which is more relevant to treat the fluid produced in ultra-relativistic heavy-ion collisions. We derive equations of motion for a relativistic dissipative fluid with zero baryon chemical potential and show that linearized equations obtained from them are stable against small perturbations. It is found that conditions for a fluid to be stable against infinitesimal perturbations are equivalent to imposing restrictions that the sound wave, csc_s, propagating in the fluid, must not exceed the speed of light cc, i.e., cs<cc_s < c. This conclusion is equivalent to that obtained in the previous paper using the Eckart frame [Phys. Rev. {\bf C 85}, (2012) 14906].Comment: 2nd version. Typos corrected. 7 pages. Contribution to The European Physical Journal A (Hadrons and Nuclei) topical issue about 'Relativistic Hydro- and Thermodynamics in Nuclear Physics

    The Bose-Einstein distribution functions and the multiparticle production at high energies

    Get PDF
    The evolution properties of propagating particles produced at high energies in a randomly distributed environment are studied. The finite size of the phase space of the multiparticle production region as well as the chaoticity can be derived.Comment: 18 pages, LaTeX, no figures, no table

    Modeling Software Characteristics and Their Correlations in A Specific Domain by Comparing Existing Similar Systems

    Get PDF
    QSIC 2005, Melbourne, Australia, Sep. 2005Software in a specific domain has several characteristics and each characteristic should be fixed when the software requirements are specified. In addition, these characteristics sometimes correlate with each other. However, we sometimes forget to specify several characteristics and/or to take their correlations into account during requirements elicitation. In this paper, we propose a meta-model for representing such characteristics and their correlations, and also propose a method to build a model for a specific domain by using documents about existing software systems. By using our model for a domain, a requirements specification for a system in the domain could be complete and unambiguous because requirements analysts can check the characteristics that should be decided. The specification could be also correct and consistent because the analysts can know side effects of a requirement change by using correlation among the characteristics. We have applied our methods to a case study for confirming the usefulness of such model and the methods.ArticleProceedings : the Fifth International Conference on Quality Software. 215-222 (2005)conference pape

    Magic angle effects of the one-dimensional axis conductivity in quasi-one dimensional conductors

    Full text link
    In quasi-one-dimensional conductors, the conductivity in both one-dimensional axis and interchain direction shows peaks when magnetic field is tilted at the magic angles in the plane perpendicular to the conducting chain. Although there are several theoretical studies to explain the magic angle effect, no satisfactory explanation, especially for the one-dimensional conductivity, has been obtained. We present a new theory of the magic angle effect in the one-dimensional conductivity by taking account of the momentum-dependence of the Fermi velocity, which should be large in the systems close to a spin density wave instability. The magic angle effect is explained in the semiclassical equations of motion, but neither the large corrugation of the Fermi surface due to long-range hoppings nor hot spots, where the relaxation time is small, on the Fermi surface are required.Comment: 4 pages, 3 figure

    Dissipative or just Nonextensive hydrodynamics? - Nonextensive/Dissipative correspondence -

    Full text link
    We argue that there is correspondence between the perfect nonextensive hydrodynamics and the usual dissipative hydrodynamics, which we call nonextensive/dissipative correspondence (NexDC). It leads to simple expression for dissipative entropy current and allows for predictions for the ratio of bulk and shear viscosities to entropy density, ζ/s\zeta/s and η/s\eta/s.Comment: 4 pages, 2 figures, presented as poster at QM2008 conference at Jaipur; will be published by Indian Journal of Physic

    Interference Effects Due to Commensurate Electron Trajectories and Topological Crossovers in (TMTSF)2ClO4

    Full text link
    We report angle-dependent magnetoresistance measurements on (TMTSF)2ClO4 that provide strong support for a new macroscopic quantum phenomenon, the interference commensurate (IC) effect, in quasi-one dimensional metals. In addition to observing rich magnetoresistance oscillations, and fitting them with one-electron calculations, we observe a clear demarcation of field-dependent behavior at local resistance minima and maxima (versus field angle). Anticipated by a theoretical treatment of the IC effect in terms of Bragg reflections in the extended Brillouin zone, this behavior results from 1D-2D topological crossovers of electron wave functions as a function of field orientation.Comment: 14 page

    Possible Verification of Tilted Anisotropic Dirac Cone in \alpha-(BEDT-TTF)_2 I_3 Using Interlayer Magnetoresistance

    Full text link
    It is proposed that the presence of a tilted and anisotropic Dirac cone can be verified using the interlayer magnetoresistance in the layered Dirac fermion system, which is realized in quasi-two-dimensional organic compound \alpha-(BEDT-TTF)_2 I_3. Theoretical formula is derived using the analytic Landau level wave functions and assuming local tunneling of electrons. It is shown that the resistivity takes the maximum in the direction of the tilt if anisotropy of the Fermi velocity of the Dirac cone is small. The procedure is described to determine the parameters of the tilt and anisotropy.Comment: 4 pages, 4 figures, corrected Fig.
    corecore