959 research outputs found

    Gas levitator having fixed levitation node for containerless processing

    Get PDF
    A method and apparatus is disclosed for levitating a specimen of material in a containerless environment at a stable nodal position independent of gravity. An elongated levitation tube has a contoured interior in the form of convergent section, constriction, and a divergent section in which the levitation node is created. A gas flow control means prevents separation of flow from the interior walls in the region of a specimen. The apparatus provides for levitating and heating the specimen simultaneously by combustion of a suitable gas mixture combined with an inert gas

    Preliminary assessment of the vacuum environment in the wake of large space vehicles

    Get PDF
    The vacuum environment in the wake region of presently planned large space vehicles is calculated using simplified models of the particle fluxes from the various sources. The fluxes which are calculated come directly from the ambient, are due to ambient particles backscattered from spacecraft emissions, and are due to self scattering of spacecraft emissions. Using nominal values for the surface emissions, the flux density environment behind a large unmanned craft at 550 km altitude is calculated. Calculations indicate that the flux density on a wake vacuum experiment conducted in the vicinity of the shuttle is substantially greater than that behind unmanned craft

    Method and apparatus for shaping and enhancing acoustical levitation forces

    Get PDF
    A method and apparatus for enhancing and shaping acoustical levitation forces in a single-axis acoustic resonance system wherein specially shaped drivers and reflectors are utilized to enhance to levitation force and better contain fluid substance by means of field shaping is described

    Proceedings of workshops to define engineering requirements for a space vacuum research facility

    Get PDF
    The construction of a molecular wake shield for the shuttle orbiter is presented as well as a collision model with a program depicting emitted molecular density around the spacecraft giving estimates of backscattered flux and other collisional processes

    Preliminary characterization of a one-axis acoustic system

    Get PDF
    The acoustic fields and levitation forces produced along the axis of a single-axis resonance system were measured. The system consisted of a St. Clair generator and a planar reflector. The levitation force was measured for bodies of various sizes and geometries (i.e., spheres, cylinders, and discs). The force was found to be roughly proportional to the volume of the body until the characteristic body radius reaches approximately 2/k (k = wave number). The acoustic pressures along the axis were modeled using Huygens principle and a method of imaging to approximate multiple reflections. The modeled pressures were found to be in reasonable agreement with those measured with a calibrated microphone

    Postflight analysis of the single-axis acoustic system on SPAR VI and recommendations for future flights

    Get PDF
    The single axis acoustic levitator that was flown on SPAR VI malfunctioned. The results of a series of tests, analyses, and investigation of hypotheses that were undertaken to determine the probable cause of failure are presented, together with recommendations for future flights of the apparatus. The most probable causes of the SPAR VI failure were lower than expected sound intensity due to mechanical degradation of the sound source, and an unexpected external force that caused the experiment sample to move radially and eventually be lost from the acoustic energy well

    EULERIAN FORMULATION FOR LARGE-DISPLACEMENT ANALYSIS OF SPACE FRAMES

    No full text
    Accepted versio

    Jet-Induced Explosions of Core Collapse Supernovae

    Get PDF
    We numerically studied the explosion of a supernova caused by supersonic jets present in its center. The jets are assumed to be generated by a magneto-rotational mechanism when a stellar core collapses into a neutron star. We simulated the process of the jet propagation through the star, jet breakthrough, and the ejection of the supernova envelope by the lateral shocks generated during jet propagation. The end result of the interaction is a highly nonspherical supernova explosion with two high-velocity jets of material moving in polar directions, and a slower moving, oblate, highly distorted ejecta containing most of the supernova material. The jet-induced explosion is entirely due to the action of the jets on the surrounding star and does not depend on neutrino transport or re-acceleration of a stalled shock. The jet mechanism can explain the observed high polarization of Type Ib,c and Type II supernovae, pulsar kicks, very high velocity material observed in supernova remnants, indications that radioactive material was carried to the hydrogen-rich layers in SN1987A, and some others observations that are very difficult or impossible to explain by the neutrino energy deposition mechanism. The breakout of the jet from a compact, hydrogen- deficient core may account for the gamma-ray bursts and radio outburst associated with SN1998bw/GRB980425.Comment: 14 pages, LaTeX, aaspp4.sty, epsf.sty, submitted to ApJ Let
    corecore