50 research outputs found
A Survey on Retrieval of Mathematical Knowledge
We present a short survey of the literature on indexing and retrieval of
mathematical knowledge, with pointers to 72 papers and tentative taxonomies of
both retrieval problems and recurring techniques.Comment: CICM 2015, 20 page
Mathematical practice, crowdsourcing, and social machines
The highest level of mathematics has traditionally been seen as a solitary
endeavour, to produce a proof for review and acceptance by research peers.
Mathematics is now at a remarkable inflexion point, with new technology
radically extending the power and limits of individuals. Crowdsourcing pulls
together diverse experts to solve problems; symbolic computation tackles huge
routine calculations; and computers check proofs too long and complicated for
humans to comprehend.
Mathematical practice is an emerging interdisciplinary field which draws on
philosophy and social science to understand how mathematics is produced. Online
mathematical activity provides a novel and rich source of data for empirical
investigation of mathematical practice - for example the community question
answering system {\it mathoverflow} contains around 40,000 mathematical
conversations, and {\it polymath} collaborations provide transcripts of the
process of discovering proofs. Our preliminary investigations have demonstrated
the importance of "soft" aspects such as analogy and creativity, alongside
deduction and proof, in the production of mathematics, and have given us new
ways to think about the roles of people and machines in creating new
mathematical knowledge. We discuss further investigation of these resources and
what it might reveal.
Crowdsourced mathematical activity is an example of a "social machine", a new
paradigm, identified by Berners-Lee, for viewing a combination of people and
computers as a single problem-solving entity, and the subject of major
international research endeavours. We outline a future research agenda for
mathematics social machines, a combination of people, computers, and
mathematical archives to create and apply mathematics, with the potential to
change the way people do mathematics, and to transform the reach, pace, and
impact of mathematics research.Comment: To appear, Springer LNCS, Proceedings of Conferences on Intelligent
Computer Mathematics, CICM 2013, July 2013 Bath, U
Oral tongue cancer gene expression profiling: Identification of novel potential prognosticators by oligonucleotide microarray analysis
<p>Abstract</p> <p>Background</p> <p>The present study is aimed at identifying potential candidate genes as prognostic markers in human oral tongue squamous cell carcinoma (SCC) by large scale gene expression profiling.</p> <p>Methods</p> <p>The gene expression profile of patients (n=37) with oral tongue SCC were analyzed using Affymetrix HG_U95Av2 high-density oligonucleotide arrays. Patients (n=20) from which there were available tumor and matched normal mucosa were grouped into stage (early vs. late) and nodal disease (node positive vs. node negative) subgroups and genes differentially expressed in tumor vs. normal and between the subgroups were identified. Three genes, <it>GLUT3</it>, <it>HSAL2</it>, and <it>PACE4</it>, were selected for their potential biological significance in a larger cohort of 49 patients via quantitative real-time RT-PCR.</p> <p>Results</p> <p>Hierarchical clustering analyses failed to show significant segregation of patients. In patients (n=20) with available tumor and matched normal mucosa, 77 genes were found to be differentially expressed (P< 0.05) in the tongue tumor samples compared to their matched normal controls. Among the 45 over-expressed genes, <it>MMP-1</it> encoding interstitial collagenase showed the highest level of increase (average: 34.18 folds). Using the criterion of two-fold or greater as overexpression, 30.6%, 24.5% and 26.5% of patients showed high levels of <it>GLUT3</it>, <it>HSAL2</it> and <it>PACE4</it>, respectively. Univariate analyses demonstrated that <it>GLUT3</it> over-expression correlated with depth of invasion (P<0.0001), tumor size (P=0.024), pathological stage (P=0.009) and recurrence (P=0.038). <it>HSAL2</it> was positively associated with depth of invasion (P=0.015) and advanced T stage (P=0.047). In survival studies, only <it>GLUT3</it> showed a prognostic value with disease-free (P=0.049), relapse-free (P=0.002) and overall survival (P=0.003). <it>PACE4</it> mRNA expression failed to show correlation with any of the relevant parameters. </p> <p>Conclusion</p> <p>The characterization of genes identified to be significant predictors of prognosis by oligonucleotide microarray and further validation by real-time RT-PCR offers a powerful strategy for identification of novel targets for prognostication and treatment of oral tongue carcinoma.</p
Management of Hazardous Waste and Contaminated Land
Regulation of hazardous waste and cleanup of contaminated sites are two major components of modern public policy for environmental protection. We review the literature on these related areas, with emphasis on empirical analyses. Researchers have identified many behavioral responses to regulation of hazardous waste, including changes in the location of economic activity. However, the drivers behind compliance with these costly regulations remain a puzzle, as most research suggests a limited role for conventional enforcement. Increasingly sophisticated research examines the benefits of cleanup of contaminated sites, yet controversy remains about whether the benefits of cleanup in the U.S. exceed its costs. Finally, research focusing on the imposition of legal liability for damages from hazardous waste finds advantages and disadvantages of the U.S. reliance on legal liability to pay for cleanup, as opposed to the government-financed approaches more common in Europe
Genetic approaches to human renal agenesis/hypoplasia and dysplasia
Congenital abnormalities of the kidney and urinary tract are frequently observed in children and represent a significant cause of morbidity and mortality. These conditions are phenotypically variable, often affecting several segments of the urinary tract simultaneously, making clinical classification and diagnosis difficult. Renal agenesis/hypoplasia and dysplasia account for a significant portion of these anomalies, and a genetic contribution to its cause is being increasingly recognized. Nevertheless, overlap between diseases and challenges in clinical diagnosis complicate studies attempting to discover new genes underlying this anomaly. Most of the insights in kidney development derive from studies in mouse models or from rare, syndromic forms of human developmental disorders of the kidney and urinary tract. The genes implicated have been shown to regulate the reciprocal induction between the ureteric bud and the metanephric mesenchyme. Strategies to find genes causing renal agenesis/hypoplasia and dysplasia vary depending on the characteristics of the study population available. The approaches range from candidate gene association or resequencing studies to traditional linkage studies, using outbred pedigrees or genetic isolates, to search for structural variation in the genome. Each of these strategies has advantages and pitfalls and some have led to significant discoveries in human disease. However, renal agenesis/hypoplasia and dysplasia still represents a challenge, both for the clinicians who attempt a precise diagnosis and for the geneticist who tries to unravel the genetic basis, and a better classification requires molecular definition to be retrospectively improved. The goal appears to be feasible with the large multicentric collaborative groups that share the same objectives and resources
Interferometric baseline performance estimations for multistatic synthetic aperture radar configurations derived from GRACE GPS observations
Recent studies have demonstrated the usefulness
of global positioning system (GPS) receivers for relative positioning
of formation-flying satellites using dual-frequency
carrier-phase observations. The accurate determination of
distances or baselines between satellites flying in formation
can provide significant benefits to a wide area of geodetic
studies. For spaceborne radar interferometry in particular,
such measurements will improve the accuracy of interferometric
products such as digital elevation models (DEM)
or surface deformation maps. The aim of this study is to
analyze the impact of relative position errors on the interferometric
baseline performance of multistatic synthetic aperture
radar (SAR) satellites flying in such a formation. Based
on accuracy results obtained from differential GPS (DGPS)
observations between the twin gravity recovery and climate
experiment (GRACE) satellites, baseline uncertainties are
derived for three interferometric scenarios of a dedicated
SAR mission. For cross-track interferometry in a bistatic
operational mode, a mean 2D baseline error (1σ) of 1.4mm
is derived, whereas baseline estimates necessary for a monostatic
acquisition mode with a 50 km along-track separation
reveal a 2D uncertainty of approximately 1.7mm. Absolute
orbit solutions based on reduced dynamic orbit determination
techniques using GRACE GPS code and carrier-phase data
allows a repeat-pass baseline estimation with an accuracy
down to 4 cm (2D 1σ). To assess the accuracy with respect to
quality requirements of high-resolution DEMs, topographic
height errors are derived from the estimated baseline uncertainties.
Taking the monostatic pursuit flight configuration as
the worst case for baseline performance, the analysis reveals
that the induced low-frequency modulation (height bias) fulfills
the relative vertical accuracy requirement
(σ smaller than 1 m linear point-to-point error) according to the digital terrain elevation
data level 3 (DTED-3) specifications for most of the baseline
constellations. The use of a GPS-based reduced dynamic
orbit determination technique improves the baseline performance
for repeat-pass interferometry. The problem of fulfilling
the DTED-3 horizontal accuracy requirements is still an
issue to be investigated. DGPS can be used as an operational
navigation tool for high-precision baseline estimation if a
geodetic-grade dual-frequency spaceborne GPS receiver is
assumed to be the primary instrument onboard the SAR satellites.
The possibility of using only single-frequency receivers,
however, requires further research effort
Operational Engineering of the COLUMBUS Thermal and Environmental Control System: Achievements, Optimizations
After commissioning of the European space-borne science laboratory Columbus, many operational products had to be improved and adapted to changing environmental conditions
and new operational experiences. In this paper, we focus on the operational engineering of the Thermal Control as well as on the Environmental Control and Live Support System which are mainly influenced by crew activities, payloads and systems. We present an anomaly handling process how to overcome unexpected anomalies or system change requests. We apply this approach to two dedicated examples for which operational
workarounds, a final recovery procedure and even a new operations concept had to be developed: (1) The introduction of a so-called Low Condensing Mode for the condensate heat
exchanger due to changing station wide requirements and (2) impacts of unexpected smoke detector contamination. With the help of telemetry data, we explain workaround, final solution
and operations concept development. We conclude how to change the Columbus air-conditioning and thermal control design to improve humidity control, condensate collection
and smoke detector performance and give recommendations for the air-conditioning and smoke detector design of future human space flight missions
Applying differential InSAR to orbital dynamics: a new approach for estimating ERS trajectories
A new approach for tuning the trajectories of the European remote sensing (ERS) satellites is developed and assessed. Differential dual-pass interferometry is applied to calculate interferograms from the phase difference of synthetic aperture radar (SAR) images acquired by the ERS satellites over the site of the 1992 earthquake in Landers, California. These interferograms contain information about orbital trajectories and geophysical deformation. Beginning with good prior estimates of the orbital trajectories, a radial and an across-track orbital adjustment is estimated at each epoch. The data are the fringe counts along distance and azimuth. Errors in the across-track and radial components of the orbit estimates produce fringes in the interferograms. The spacing between roughly parallel fringes gives the gradients in distance and azimuth coordinates. The approach eliminates these fringes from interferometric pairs spanning relatively short time intervals containing few topographic residuals or atmospheric artefacts. An optimum interferometric path with six SAR acquisitions is selected to study post- and inter-seismic deformation fields. In order to regularize the problem, it is assumed that the radial and across-track adjustments both sum to zero. Applying the adjustment approach to the prior estimates of trajectory from the Delft Institute for Earth-Orientated Space Research (DEOS), root mean squares of 7.3 cm for the acrosstrack correction components and 2.4 cm for the radial ones are found. Assuming 0.1 fringes for the a priori standard deviation of the measurement, the approach yields mean standard deviations of 2.4 cm for the across-track and 4.5 cm for the radial components. The approach allows an "interval by interval" improvement of a set of orbital estimates from which post-fit interferograms of different time intervals spanning a total 3.8-year inter-seismic time interval can be created. The interferograms calculated with the post-fit orbital estimates compare favorably with those corrected with a conventional orbital tuning approach. Using the adjustment approach, it is possible to distinguish between orbital and deformation contributions to interferometric SAR (InSAR) phase gradients. Surface deformation changes over an inter-seismic time interval longer than one year can be measured. This approach is, however, limited to well-correlated interferograms where it is possible to measure the fringe gradient