152 research outputs found

    Combined Use of Sensitivity Analysis and Hybrid Wavelet-PSO- ANFIS to Improve Dynamic Performance of DFIG-Based Wind Generation

    Get PDF
    In the past few decades, increasing growth of wind power plants causes different problems for the power quality in the grid. Normal and transient impacts of these units on the power grid clearly indicate the need to improve the quality of the electricity generated by them in the design of such systems. Improving the efficiency of the large-scale wind system is dependent on the control parameters. The main contribution of this study is to propose a sensitivity analysis approach integrated with a novel hybrid approach combining wavelet transform, particle swarm optimization and an Adaptive-Network-based Fuzzy Inference System (ANFIS) known as Wavelet-ANFIS-PSO to acquire the optimal control of Doubly-Fed Induction Generators (DFIG) based wind generation. In order to mitigate the optimization complexity, sensitivity analysis is offered to identify the Unified Dominate Control Parameters (UDCP) rather than optimization of all parameters. The robustness of the proposed approach in finding optimal parameters, and consequently achieve a high dynamic performance is confirmed on two area power system under different operating conditions

    Optimal Capacitor Allocation in Radial Distribution Networks for Annual Costs Minimization Using Hybrid PSO and Sequential Power Loss Index Based Method

    Get PDF
    In the most recent heuristic methods, the high potential buses for capacitor placement are initially identified and ranked using loss sensitivity factors (LSFs) or power loss index (PLI). These factors or indices help to reduce the search space of the optimization procedure, but they may not always indicate the appropriate placement of capacitors. This paper proposes an efficient approach for the optimal capacitor placement in radial distribution networks with the aim of annual costs minimization based on the sequential placement of capacitors and calculation of power loss index. In the proposed approach, initially, the number of capacitors location is estimated using the total reactive power demand and the average range of capacitors available in the market. Then, the high potential buses can be identified using sequential power loss index-based method. This method leads to achieve the optimal or near optimal locations for the capacitors and decrease the search space of the optimization procedure significantly. The particle Swarm Optimization (PSO) algorithm takes the final decision for the optimum size and location of capacitors. To evaluate the efficiency of the conducted approach, it is tested on several well-known distribution networks, and the results are compared with those of existing methods in the literature. The comparisons verify the effectiveness of the proposed method in producing fast and optimal solutions

    Development, cross-cultural adaptation, and psychometric characteristics of the persian progressive aphasia language scale in patients with primary progressive aphasia: A pilot study

    Get PDF
    Introduction: Primary Progressive Aphasia (PPA) is a neurological condition characterized by progressive dissolution of language capabilities. The Progressive Aphasia Language Scale (PALS) is an easy-to-apply bedside clinical scale capable of capturing and grading the key language features essential for the classification of PPA. The objective of the present study was to develop and validate the Persian version of the PALS (PALS-P) as a clinical language assessment test. Methods: In this cross-sectional study, PALS was translated and adapted into Persian according to the international guidelines. A total of 30 subjects (10 subjects with PPA and 20 control subjects without dementia) were recruited to evaluate the intra-rater reliability and discriminant validity of PALS-P. Results: The intra-rater reliability of the PALS-P within a 14-day interval was excellent for each subtest (ICC agreement range=0.81-1.0). PALS-P results were statistically significant among groups, suggesting its discriminative validity. Conclusion: This preliminary study indicates that PALS-P was successfully developed and translated. It seems to be a valid and reliable screening tool to assess language skills in Persian-speaking subjects with progressive aphasia

    Titanium Nitride Films for Ultrasensitive Microresonator Detectors

    Full text link
    Titanium nitride (TiNx) films are ideal for use in superconducting microresonator detectors because: a) the critical temperature varies with composition (0 < Tc < 5 K); b) the normal-state resistivity is large, \rho_n ~ 100 μ\muOhm cm, facilitating efficient photon absorption and providing a large kinetic inductance and detector responsivity; and c) TiN films are very hard and mechanically robust. Resonators using reactively sputtered TiN films show remarkably low loss (Q_i > 10^7) and have noise properties similar to resonators made using other materials, while the quasiparticle lifetimes are reasonably long, 10-200 μ\mus. TiN microresonators should therefore reach sensitivities well below 10^-19 WHz^(-1/2).Comment: to be published in AP

    Two-level system noise reduction for Microwave Kinetic Inductance Detectors

    Get PDF
    Noise performance is one of the most crucial aspects of any detector. Superconducting Microwave Kinetic Inductance Detectors (MKIDs) have an "excess" frequency noise that shows up as a small time dependent jitter of the resonance frequency characterized by the frequency noise power spectrum measured in units of Hz^2/Hz. Recent studies have shown that this noise almost certainly originates from a surface layer of two-level system (TLS) defects on the metallization or substrate. Fluctuation of these TLSs introduces noise in the resonator due to coupling of the TLS electric dipole moments to the resonator's electric field. Motivated by a semi-empirical quantitative theory of this noise mechanism, we have designed and tested new resonator geometries in which the high-field "capacitive" portion of the CPW resonator is replaced by an interdigitated capacitor (IDC) structure with 10 - 20 micron electrode spacing, as compared to the 2 micron spacing used for our more conventional CPW resonators. Measurements show that this new IDC design has dramatically lower TLS noise, currently by about a factor of ~29 in terms of the frequency noise power spectrum, corresponding to an improvement of about a factor of 29^(1/2) in NEP. These new devices are replacing the CPW resonators in our next design iteration in progress for MKIDCam. Opportunities and prospects for future reduction of the TLS noise will be discussed.Comment: 4 pages, 5 figures, Proceedings of the 13th International Workshop on Low Temperature Detectors, Stanford July 20-24, 200

    Transparency and (no) more in the Political Advertising Regulation

    Get PDF
    The EU has taken its first steps into a sensitive space by proposing a new Regulation on Political Advertising (RPA). Simply put, the RPA does two things, which this commentary will address in turn. First, it replaces national laws on the transparency of political advertising with a single set of rules. These provide progressively more information to citizens who see an ad, to the public through ad libraries, and to regulators and private actors who are authorised to request information. Second, the RPA tightens the GDPR’s ban on using sensitive data for targeted political advertising. It leaves member states free, however, to further regulate the use of political advertising.The RPA takes a number of important steps in political advertising law. It strengthens the transparency of the (so far largely unregulated) online political advertising environment. It expands ad libraries with information on targeting and funding. And it allows a broad range of private actors (including civil society and journalists) to request data from a broad range of companies (including ad agencies and small platforms). At the same time, the RPA not only represents the EU’s most significant effort to address concerns about political advertising’s democratic impact, but (because it fully harmonises transparency) also shapes how individuals, researchers, and national regulators can scrutinise political advertising. It is therefore important to determine whether the regulation lives up to the Commission’s hype

    Microwave Kinetic Inductance Detector (MKID) Camera Testing for Submillimeter Astronomy

    Get PDF
    Developing kilopixel focal planes for incoherent submm- and mm-wave detectors remains challenging due to either the large hardware overhead or the complexity of multiplexing standard detectors. Microwave kinetic inductance detectors (MKIDs) provide a efficient means to produce fully lithographic background-limited kilopixel focal planes. We are constructing an MKID-based camera for the Caltech Submillimeter Observatory with 576 spatial pixels each simultaneously sensitive in 4 bands at 230, 300, 350, and 400 GHz. The novelty of MKIDs has required us to develop new techniques for detector characterization. We have measured quasiparticle lifetimes and resonator Qs for detector bath temperatures between 200 mK and 400 mK. Equivalent lifetime measurements were made by coupling energy into the resonators either optically or by driving the third harmonic of the resonator. To determine optical loading, we use both lifetime and internal Q measurements, which range between 15,000 and 30,000 for our resonators. Spectral bandpass measurements confirm the placement of the 230 and 350 GHz bands. Additionally, beam maps measurements conform to expectations. The same device design has been characterized on both sapphire and silicon substrates, and for different detector geometries. We also report on the incorporation of new shielding to reduce detector sensitivity to local magnetic fields

    Optimization of MKID Noise Performance Via Readout Technique for Astronomical Applications

    Get PDF
    Detectors employing superconducting microwave kinetic inductance detectors (MKIDs) can be read out by measuring changes in either the resonator frequency or dissipation. We will discuss the pros and cons of both methods, in particular, the readout method strategies being explored for the Multiwavelength Sub/millimeter Inductance Camera (MUSIC) to be commissioned at the CSO in 2010. As predicted theoretically and observed experimentally, the frequency responsivity is larger than the dissipation responsivity, by a factor of 2-4 under typical conditions. In the absence of any other noise contributions, it should be easier to overcome amplifier noise by simply using frequency readout. The resonators, however, exhibit excess frequency noise which has been ascribed to a surface distribution of two-level fluctuators sensitive to specific device geometries and fabrication techniques. Impressive dark noise performance has been achieved using modified resonator geometries employing interdigitated capacitors (IDCs). To date, our noise measurement and modeling efforts have assumed an onresonance readout, with the carrier power set well below the nonlinear regime. Several experimental indicators suggested to us that the optimal readout technique may in fact require a higher readout power, with the carrier tuned somewhat off resonance, and that a careful systematic study of the optimal readout conditions was needed. We will present the results of such a study, and discuss the optimum readout conditions as well as the performance that can be achieved relative to BLIP

    The cryomechanical design of MUSIC: a novel imaging instrument for millimeter-wave astrophysics at the Caltech Submillimeter Observatory

    Get PDF
    MUSIC (Multicolor Submillimeter kinetic Inductance Camera) is a new facility instrument for the Caltech Submillimeter Observatory (Mauna Kea, Hawaii) developed as a collaborative effect of Caltech, JPL, the University of Colorado at Boulder and UC Santa Barbara, and is due for initial commissioning in early 2011. MUSIC utilizes a new class of superconducting photon detectors known as microwave kinetic inductance detectors (MKIDs), an emergent technology that offers considerable advantages over current types of detectors for submillimeter and millimeter direct detection. MUSIC will operate a focal plane of 576 spatial pixels, where each pixel is a slot line antenna coupled to multiple detectors through on-chip, lumped-element filters, allowing simultaneously imaging in four bands at 0.86, 1.02, 1.33 and 2.00 mm. The MUSIC instrument is designed for closed-cycle operation, combining a pulse tube cooler with a two-stage Helium-3 adsorption refrigerator, providing a focal plane temperature of 0.25 K with intermediate temperature stages at approximately 50, 4 and 0.4 K for buffering heat loads and heat sinking of optical filters. Detector readout is achieved using semi-rigid coaxial cables from room temperature to the focal plane, with cryogenic HEMT amplifiers operating at 4 K. Several hundred detectors may be multiplexed in frequency space through one signal line and amplifier. This paper discusses the design of the instrument cryogenic hardware, including a number of features unique to the implementation of superconducting detectors. Predicted performance data for the instrument system will also be presented and discussed
    corecore