178 research outputs found
Cu/Ag EAM Potential Optimized for Heteroepitaxial Diffusion from ab initio Data
A binary embedded-atom method (EAM) potential is optimized for Cu on Ag(111)
by fitting to ab initio data. The fitting database consists of DFT calculations
of Cu monomers and dimers on Ag(111), specifically their relative energies,
adatom heights, and dimer separations. We start from the Mishin Cu-Ag EAM
potential and first modify the Cu-Ag pair potential to match the FCC/HCP site
energy difference then include Cu-Cu pair potential optimization for the entire
database. The optimized EAM potential reproduce DFT monomer and dimer relative
energies and geometries correctly. In trimer calculations, the potential
produces the DFT relative energy between FCC and HCP trimers, though a
different ground state is predicted. We use the optimized potential to
calculate diffusion barriers for Cu monomers, dimers, and trimers. The
predicted monomer barrier is the same as DFT, while experimental barriers for
monomers and dimers are both lower than predicted here. We attribute the
difference with experiment to the overestimation of surface adsorption energies
by DFT and a simple correction is presented. Our results show that the
optimized Cu-Ag EAM can be applied in the study of larger Cu islands on
Ag(111).Comment: 15 pages, 7 figure
Inferring the dynamics of ionic currents from recursive piecewise data assimilation of approximate neuron models
We construct neuron models from data by transferring information from an
observed time series to the state variables and parameters of Hodgkin-Huxley
models. When the learning period completes, the model will predict additional
observations and its parameters uniquely characterise the complement of ion
channels. However, the assimilation of biological data, as opposed to model
data, is complicated by the lack of knowledge of the true neuron equations.
Reliance on guessed conductance models is plagued with multi-valued parameter
solutions. Here, we report on the distributions of parameters and currents
predicted with intentionally erroneous models, over-specified models, and an
approximate model fitting hippocampal neuron data. We introduce a recursive
piecewise data assimilation (RPDA) algorithm that converges with near-perfect
reliability when the model is known. When the model is unknown, we show model
error introduces correlations between certain parameters. The ionic currents
reconstructed from these parameters are excellent predictors of true currents
and carry a higher degree of confidence, >95.5%, than underlying parameters,
>53%. Unexpressed ionic currents are correctly filtered out even in the
presence of mild model error. When the model is unknown, the covariance
eigenvalues of parameter estimates are found to be a good gauge of model error.
Our results suggest that biological information may be retrieved from data by
focussing on current estimates rather than parameters
Competition between Vortex and “S”-like States in Laterally Confined Magnetic Trilayers
AbstractWe report on the magnetization reversal and micromagnetic configurations of Co(10nm)/Pd(0.8nm)/Co(10nm) and Co (20nm) nanodisks studied as a function of the disk diameter. Using magneto-optical Kerr effect (MOKE) we show that the magnetic fields of vortex nucleation and annihilation decrease while the nanodisk diameter increases. We have discovered that in an array of trilayer nanodisks with diameters D = 200nm, direct exchange through pinholes and interlayer indirect ferromagnetic exchange coupling promote the formation of a non-uniform “S”-like state with opposed magnetic moments in adjacent Co layers. In larger trilayers nanodisks (D = 400 - 800nm) the vortex state, like in single layer nanodisk, is formed
Magnetic Quantum Dot: A Magnetic Transmission Barrier and Resonator
We study the ballistic edge-channel transport in quantum wires with a
magnetic quantum dot, which is formed by two different magnetic fields B^* and
B_0 inside and outside the dot, respectively. We find that the electron states
located near the dot and the scattering of edge channels by the dot strongly
depend on whether B^* is parallel or antiparallel to B_0. For parallel fields,
two-terminal conductance as a function of channel energy is quantized except
for resonances, while, for antiparallel fields, it is not quantized and all
channels can be completely reflected in some energy ranges. All these features
are attributed to the characteristic magnetic confinements caused by nonuniform
fields.Comment: 4 pages, 4 figures, to be published in Physical Review Letter
Electron scattering on circular symmetric magnetic profiles in a two-dimensional electron gas
The quasi-bound and scattered states in a 2DEG subjected to a circular
symmetric steplike magnetic profile with zero average magnetic field are
studied. We calculate the effect of a random distribution of such identical
profiles on the transport properties of a 2DEG. We show that a nonzero Hall
resistance can be obtained, although , and that in some cases it
can even change sign as function of the Fermi energy or the magnetic field
strength. The Hall and magnetoresistance show pronounced resonances apart from
the Landau states of the inner core, corresponding to the so-called quasi-bound
snake orbit states.Comment: 7 pages, 8 figure
Ballistic Hall Photovoltammetry of Magnetic Resonance in Individual Nanomagnets
We report on ballistic Hall photo-voltammetry as a contactless probe of localized spin excitations. Spins resonating in the near-field of a two-dimensional electron system are shown to induce a long range electromotive force which we calculate. We use this coupling mechanism to detect the spin wave eigenmodes of a single ferromagnet of sub-100nm size. The high sensitivity of this detection technique, 380 spins/, and its non-invasiveness present advantages for probing magnetization dynamics and spin transport
Noise-controlled signal transmission in a multithread semiconductor neuron
We report on stochastic effects in a new class of semiconductor structures that accurately imitate the electrical activity of biological neurons. In these devices, electrons and holes play the role of K+ and Na+ ions that give the action potentials in real neurons. The structure propagates and delays electrical pulses via a web of spatially distributed transmission lines. We study the transmission of a periodic signal through a noisy semiconductor neuron. Using experimental data and a theoretical model we demonstrate that depending on the noise level and the amplitude of the useful signal, transmission is enhanced by a variety of nonlinear phenomena, such as stochastic resonance, coherence resonance, and stochastic synchronization
Anisotropic magnetoresistance in a 2DEG in a quasi-random magnetic field
We present magnetotransport results for a 2D electron gas (2DEG) subject to
the quasi-random magnetic field produced by randomly positioned sub-micron Co
dots deposited onto the surface of a GaAs/AlGaAs heterostructure. We observe
strong local and non-local anisotropic magnetoresistance for external magnetic
fields in the plane of the 2DEG. Monte-Carlo calculations confirm that this is
due to the changing topology of the quasi-random magnetic field in which
electrons are guided predominantly along contours of zero magnetic field.Comment: 4 pages, 6 figures, submitted to Phys. Rev.
Resistance effects due to magnetic guiding orbits
The Hall and magnetoresistance of a two dimensional electron gas subjected to
a magnetic field barrier parallel to the current direction is studied as
function of the applied perpendicular magnetic field. The recent experimental
results of Nogaret {\em et al.} [Phys. Rev. Lett. {\bf 84}, 2231 (2000)] for
the magneto- and Hall resistance are explained using a semi-classical theory
based on the Landauer-B\"{u}ttiker formula. The observed positive
magnetoresistance peak is explained as due to a competition between a decrease
of the number of conducting channels as a result of the growing magnetic field,
from the fringe field of the ferromagnetic stripe as it becomes magnetized, and
the disappearance of snake orbits and the subsequent appearance of cycloidlike
orbits.Comment: 7 pages, 7 figure
Quantum Transport in Nonuniform Magnetic Fields: Aharonov-Bohm Ring as a Spin Switch
We study the spin-dependent magneto conductance in mesoscopic rings subject
to an inhomogeneous in-plane magnetic field. We show that the polarization
direction of transmitted spin-polarized electrons can be controlled via an
additional magnetic flux such that spin flips are induced at half a flux
quantum. This quantum interference effect is independent of the strength of the
nonuniform field applied. We give an analytical explanation for one-dimensional
rings and numerical results for corresponding ballistic microstructures.Comment: 5 pages, 3 figures. To be published in Physical Review Letter
- …