295 research outputs found

    Boussinesq-like multi-component lattice equations and multi-dimensional consistency

    Full text link
    We consider quasilinear, multi-variable, constant coefficient, lattice equations defined on the edges of the elementary square of the lattice, modeled after the lattice modified Boussinesq (lmBSQ) equation, e.g., y~z=x~x\tilde y z=\tilde x-x. These equations are classified into three canonical forms and the consequences of their multidimensional consistency (Consistency-Around-the-Cube, CAC) are derived. One of the consequences is a restriction on form of the equation for the zz variable, which in turn implies further consistency conditions, that are solved. As result we obtain a number of integrable multi-component lattice equations, some generalizing lmBSQ.Comment: 24 page

    On a two-parameter extension of the lattice KdV system associated with an elliptic curve

    Full text link
    A general structure is developed from which a system of integrable partial difference equations is derived generalising the lattice KdV equation. The construction is based on an infinite matrix scheme with as key ingredient a (formal) elliptic Cauchy kernel. The consistency and integrability of the lattice system is discussed as well as special solutions and associated continuum equations.Comment: Submitted to the proceedings of the Oeresund PDE-symposium, 23-25 May 2002; 17 pages LaTeX, style-file include

    A new two-dimensional lattice model that is "consistent around a cube"

    Full text link
    For two-dimensional lattice equations one definition of integrability is that the model can be naturally and consistently extended to three dimensions, i.e., that it is "consistent around a cube" (CAC). As a consequence of CAC one can construct a Lax pair for the model. Recently Adler, Bobenko and Suris conducted a search based on this principle and certain additional assumptions. One of those assumptions was the "tetrahedron property", which is satisfied by most known equations. We present here one lattice equation that satisfies the consistency condition but does not have the tetrahedron property. Its Lax pair is also presented and some basic properties discussed.Comment: 8 pages in LaTe

    Quantum discrete Dubrovin equations

    Full text link
    The discrete equations of motion for the quantum mappings of KdV type are given in terms of the Sklyanin variables (which are also known as quantum separated variables). Both temporal (discrete-time) evolutions and spatial (along the lattice at a constant time-level) evolutions are considered. In the classical limit, the temporal equations reduce to the (classical) discrete Dubrovin equations as given in a previous publication. The reconstruction of the original dynamical variables in terms of the Sklyanin variables is also achieved.Comment: 25 page

    Integrability and Fusion Algebra for Quantum Mappings

    Get PDF
    We apply the fusion procedure to a quantum Yang-Baxter algebra associated with time-discrete integrable systems, notably integrable quantum mappings. We present a general construction of higher-order quantum invariants for these systems. As an important class of examples, we present the Yang-Baxter structure of the Gel'fand-Dikii mapping hierarchy, that we have introduced in previous papers, together with the corresponding explicit commuting family of quantum invariants.Comment: 26 page

    Lagrangian multiform structure for the lattice Gel'fand-Dikii hierarchy

    Full text link
    The lattice Gel'fand-Dikii hierarchy was introduced by Nijhoff, Papageorgiou, Capel and Quispel in 1992 as the family of partial difference equations generalizing to higher rank the lattice Korteweg-de Vries systems, and includes in particular the lattice Boussinesq system. We present a Lagrangian for the generic member of the lattice Gel'fand-Dikii hierarchy, and show that it can be considered as a Lagrangian 2-form when embedded in a higher dimensional lattice, obeying a closure relation. Thus the multiform structure proposed in arXiv:0903.4086v2 [nlin.SI] is extended to a multi-component system.Comment: 12 page

    An algebraic method of classification of S-integrable discrete models

    Full text link
    A method of classification of integrable equations on quad-graphs is discussed based on algebraic ideas. We assign a Lie ring to the equation and study the function describing the dimensions of linear spaces spanned by multiple commutators of the ring generators. For the generic case this function grows exponentially. Examples show that for integrable equations it grows slower. We propose a classification scheme based on this observation.Comment: 11 pages, workshop "Nonlinear Physics. Theory and Experiment VI", submitted to TM
    corecore