122,914 research outputs found
The Impacts of Three Flamelet Burning Regimes in Nonlinear Combustion Dynamics
Axisymmetric simulations of a liquid rocket engine are performed using a
delayed detached-eddy-simulation (DDES) turbulence model with the Compressible
Flamelet Progress Variable (CFPV) combustion model. Three different pressure
instability domains are simulated: completely unstable, semi-stable, and fully
stable. The different instability domains are found by varying the combustion
chamber and oxidizer post length. Laminar flamelet solutions with a detailed
chemical mechanism are examined. The  Probability Density Function (PDF)
for the mixture fraction and Dirac  PDF for both the pressure and the
progress variable are used. A coupling mechanism between the Heat Release Rate
(HRR) and the pressure in an unstable cycle is demonstrated. Local extinction
and reignition is investigated for all the instability domains using the full
S-curve approach. A monotonic decrease in the amount of local extinctions and
reignitions occurs when pressure oscillation amplitude becomes smaller. The
flame index is used to distinguish between the premixed and non-premixed
burning mode in different stability domains. An additional simulation of the
unstable pressure oscillation case using only the stable flamelet burning
branch of the S-curve is performed. Better agreement with experiments in terms
of pressure oscillation amplitude is found when the full S-curve is used.Comment: 25 pages, 12 figures. Submitted to Combustion and Flame for a Special
  Issu
On the Design of Secure Full-Duplex Multiuser Systems under User Grouping Method
Consider a full-duplex (FD) multiuser system where an FD base station (BS) is
designed to simultaneously serve both downlink users and uplink users in the
presence of half-duplex eavesdroppers (Eves). Our problem is to maximize the
minimum secrecy rate (SR) among all legitimate users by proposing a novel user
grouping method, where information signals at the FD-BS are accompanied with
artificial noise to degrade the Eves' channel. The SR problem has a highly
nonconcave and nonsmooth objective, subject to nonconvex constraints due to
coupling between the optimization variables. Nevertheless, we develop a
path-following low-complexity algorithm, which invokes only a simple convex
program of moderate dimensions at each iteration. We show that our
path-following algorithm guarantees convergence at least to a local optima. The
numerical results demonstrate the merit of our proposed approach compared to
existing well-known ones, i.e., conventional FD and nonorthogonal multiple
access.Comment: 6 pages, 3 figure
Profile of clindamycin phosphate 1.2%/benzoyl peroxide 3.75% aqueous gel for the treatment of acne vulgaris.
Acne vulgaris is a common and chronic skin disease, and is a frequent source of morbidity for affected patients. Treatment of acne vulgaris is often difficult due to the multifactorial nature of this disease. Combination therapy, such as that containing clindamycin and benzoyl peroxide, has become the standard of care. Several fixed formulations of clindamycin 1% and benzoyl peroxide of varying concentrations are available and have been used with considerable success. The major limitation is irritation and dryness from higher concentrations of benzoyl peroxide, and a combination providing optimal efficacy and tolerability has yet to be determined. Recently, a clindamycin and benzoyl peroxide 3.75% fixed combination formulation was developed. Studies have suggested that this formulation may be a safe and effective treatment regimen for patients with acne vulgaris. Here, we provide a brief review of acne pathogenesis, benzoyl peroxide and clindamycin, and profile a new Clindamycin-BP 3.75% fixed combination gel for the treatment of moderate-to-severe acne vulgaris
- …
