6,322 research outputs found

    Ferromagnetism, paramagnetism and a Curie-Weiss metal in an electron doped Hubbard model on a triangular lattice

    Get PDF
    Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative inter-site hopping amplitudes (t<0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t>0 a large enhancement of the effective mass, ferromagnetism and a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e. ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. We propose that `Curie-Weiss metal' phase observed in NaxCoO2 is a consequence of the crossover from ``bad metal'' with incoherent quasiparticles at temperatures T>T* and Fermi liquid behavior with enhanced parameters below T*, where T* is a low energy coherence scale induced by strong local Coulomb electron correlations. We propose a model which contains the charge ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.Comment: 24 pages, 15 figures; accepted for publication in Phys. Rev.

    Exact Results for the Crossover from Gaussian to Non-Gaussian Order Parameter Fluctuations in Quasi One-Dimensional Electronic Systems

    Full text link
    The physics of quasi one-dimensional Peierls systems is dominated by order parameter fluctuations. We present an algorithm which allows for the first time to exactly calculate physical properties of the electrons gas coupled to classical order parameter fluctuations. The whole range from the Gaussian regime dominated by amplitude fluctuations to the non-Gaussian regime dominated by phase fluctuations is accessible. Our results provide insight into the 'pseudogap' phenomenon occurring in underdoped high-temperature superconductors, quasi one-dimensional organic conductors and liquid metals.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Temperature dependence of the interlayer magnetoresistance of quasi-one-dimensional Fermi liquids at the magic angles

    Full text link
    The interlayer magnetoresistance of a quasi-one-dimensional Fermi liquid is considered for the case of a magnetic field that is rotated within the plane perpendicular to the most-conducting direction. Within semi-classical transport theory dips in the magnetoresistance occur at integer amgic angles only when the electronic dispersion parallel to the chains is nonlinear. If the field direction is fixed at one of the magic angles and the temperature is varied the resulting variation of the scattering rate can lead to a non-monotonic variation of the interlayer magnetoresistance with temperature. Although the model considered here gives a good description of some of the properties of the Bechgaard salts, (TMTSF)2PF6 for pressures less than 8kbar and (TMTSF)2ClO4 it gives a poor description of their properties when the field is parallel to the layers and of the intralayer transport.Comment: 10pages, RevTeX + epsf, 3 figure

    Fight to Be Forgotten: Exploring the Efficacy of Data Erasure in Popular Operating Systems

    Get PDF
    A long history of longitudinal and intercultural research has identified decommissioned storage devices (e.g., USB memory sticks) as a serious privacy and security threat. Sensitive data deleted by previous owners have repeatedly been found on second-hand USB sticks through forensic analysis. Such data breaches are unlikely to occur when data is securely erased, rather than being deleted. Yet, research shows people confusing these two terms. In this paper, we report on an investigation of possible causes for this confusion. We analysed the user interface of two popular operating systems and found: (1) inconsistencies in the language used around delete and erase functions, (2) insecure default options, and (3) unclear or incomprehensible information around delete and erase functions. We discuss how this could result in data controllers becoming non-compliant with a legal obligation for erasure, putting data subjects at risk of accidental data breaches from the decommissioning of storage devices. Finally, we propose improvements to the design of relevant user interface elements and the development of official guidelines for best practice on GDPR compatible data erasure procedures

    Dimensional crossover and metal-insulator transition in quasi-two-dimensional disordered conductors

    Full text link
    We study the metal-insulator transition (MIT) in weakly coupled disordered planes on the basis of a Non-Linear Sigma Model (NLσ\sigma M). Using two different methods, a renormalization group (RG) approach and an auxiliary field method, we calculate the crossover length between a 2D regime at small length scales and a 3D regime at larger length scales. The 3D regime is described by an anisotropic 3D NLσ\sigma M with renormalized coupling constants. We obtain the critical value of the single particle interplane hopping which separates the metallic and insulating phases. We also show that a strong parallel magnetic field favors the localized phase and derive the phase diagram.Comment: 16 pages (RevTex), 4 poscript figure

    Geodynamo and mantle convection simulations on the Earth Simulator using the Yin-Yang grid

    Full text link
    We have developed finite difference codes based on the Yin-Yang grid for the geodynamo simulation and the mantle convection simulation. The Yin-Yang grid is a kind of spherical overset grid that is composed of two identical component grids. The intrinsic simplicity of the mesh configuration of the Yin-Yang grid enables us to develop highly optimized simulation codes on massively parallel supercomputers. The Yin-Yang geodynamo code has achieved 15.2 Tflops with 4096 processors on the Earth Simulator. This represents 46% of the theoretical peak performance. The Yin-Yang mantle code has enabled us to carry out mantle convection simulations in realistic regimes with a Rayleigh number of 10710^7 including strongly temperature-dependent viscosity with spatial contrast up to 10610^6.Comment: Plenary talk at SciDAC 200

    Electronic properties of correlated metals in the vicinity of a charge order transition: optical spectroscopy of α\alpha-(BEDT-TTF)2M_2MHg(SCN)4_4 (MM = NH4_4, Rb, Tl)

    Full text link
    The infrared spectra of the quasi-two-dimensional organic conductors α\alpha-(BEDT-TTF)2_2MMHg(SCN)4_4 (MM = NH4_4, Rb, Tl) were measured in the range from 50 to 7000 \cm down to low temperatures in order to explore the influence of electronic correlations in quarter-filled metals. The interpretation of electronic spectra was confirmed by measurements of pressure dependant reflectance of α\alpha-(BEDT-TTF)2_2KHg(SCN)4_4 at T=300 K. The signatures of charge order fluctuations become more pronounced when going from the NH4_4 salt to Rb and further to Tl compounds. On reducing the temperature, the metallic character of the optical response in the NH4_4 and Rb salts increases, and the effective mass diminishes. For the Tl compound, clear signatures of charge order are found albeit the metallic properties still dominate. From the temperature dependence of the electronic scattering rate the crossover temperature is estimated below which the coherent charge-carriers response sets in. The observations are in excellent agreement with recent theoretical predictions for a quarter-filled metallic system close to charge order

    Integrability and exact spectrum of a pairing model for nucleons

    Full text link
    A pairing model for nucleons, introduced by Richardson in 1966, which describes proton-neutron pairing as well as proton-proton and neutron-neutron pairing, is re-examined in the context of the Quantum Inverse Scattering Method. Specifically, this shows that the model is integrable by enabling the explicit construction of the conserved operators. We determine the eigenvalues of these operators in terms of the Bethe ansatz, which in turn leads to an expression for the energy eigenvalues of the Hamiltonian.Comment: 14 pages, latex, no figure

    Competition between Charge Ordering and Superconductivity in Layered Organic Conductors α\alpha-(BEDT-TTF)2M_2MHg(SCN)4_4 (M = K, NH4_4)

    Full text link
    While the optical properties of the superconducting salt α\alpha-(BEDT-TTF)2_2NH4_4Hg(SCN)4_4 remain metallic down to 2 K, in the non-superconducting K-analog a pseudogap develops at frequencies of about 200 cm1^{-1} for temperatures T < 200 K. Based on exact diagonalisation calculations on an extended Hubbard model at quarter-filling we argue that fluctuations associated with short range charge ordering are responsible for the observed low-frequency feature. The different ground states, including superconductivity, are a consequence of the proximity of these compounds to a quantum phase charge-ordering transition driven by the intermolecular Coulomb repulsion.Comment: 4 pages, 3 figure

    Determination of the Fermi Velocity by Angle-dependent Periodic Orbit Resonance Measurements in the Organic Conductor alpha-(BEDT-TTF)2KHg(SCN)4

    Full text link
    We report detailed angle-dependent studies of the microwave (f=50 to 90 GHz) interlayer magneto-electrodynamics of a single crystal sample of the organic charge-density-wave (CDW) conductor alpha-(BEDT-TTF)2KHg(SCN)4. Recently developed instrumentation enables both magnetic field (B) sweeps for a fixed sample orientation and, for the first time, angle sweeps at fixed f/B. We observe series' of resonant absorptions which we attribute to periodic orbit resonances (POR) - a phenomenon closely related to cyclotron resonance. The angle dependence of the POR indicate that they are associated with the low temperature quasi-one-dimensional (Q1D) Fermi surface (FS) of the title compound; indeed, all of the resonance peaks collapse beautifully onto a single set of f/B versus angle curves, generated using a semiclassical magneto-transport theory for a single Q1D FS. We show that Q1D POR measurements provide one of the most direct methods for determining the Fermi velocity, without any detailed assumptions concerning the bandstructure; our analysis yields an average value of v_F=6.5x10^4 m/s. Quantitative analysis of the POR harmonic content indicates that the Q1D FS is strongly corrugated. This is consistent with the assumption that the low-temperature FS derives from a reconstruction of the high temperature quasi-two-dimensional FS, caused by the CDW instability. Detailed analysis of the angle dependence of the POR yields parameters associated with the CDW superstructure which are consistent with published results. Finally, we address the issue as to whether or not the interlayer electrodynamics are coherent in the title compound.Comment: 28 pages, including 6 figures. Submitted to PR
    corecore