415 research outputs found

    Piezoelectric materials parameters for piezoelectric thin films in GHz applications

    Get PDF
    Piezoelectric thin films have existing and promising new applications in microwave filter technologies. The final performance depends on many parameters, and very specifically on the materials properties of each involved material. In this article, materials and properties for thin-film bulk acoustic wave resonators are discussed on some selected issues: the piezoelectric coefficients and acoustic losses of AlN, the relation of the first one with microstructural parameters, the inclusion of parasitic elements, and the merits of and problems with ferroelectric material

    A finite element based formulation for sensitivity studies of piezoelectric systems

    Get PDF
    Sensitivity Analysis is a branch of numerical analysis which aims to quantify the affects that variability in the parameters of a numerical model have on the model output. A finite element based sensitivity analysis formulation for piezoelectric media is developed here and implemented to simulate the operational and sensitivity characteristics of a piezoelectric based distributed mode actuator (DMA). The work acts as a starting point for robustness analysis in the DMA technology

    Picosecond-laser-induced structural modifications in the bulk of single-crystal diamond

    Get PDF
    Arrays of through laser-graphitized microstructureshavebeenfabricatedintypeIIasingle-crystal1.2-mmthick diamond plates by multipulse laser irradiation with 10-ps pulses at λ=532 nm wavelength. Raman and photoluminescence (PL) spectroscopy studies of the bulk microstructures have evidenced the diamond transformation to amorphous carbon and graphitic phases and the formation of radiation defects pronounced in the PL spectra as the self-interstitial related center, the 3H center, at 504 nm. It is found that the ultrafast-laser-induced structural modiïŹcations in the bulk of single-crystal diamond plates occur along{111}planes, known as the planes of the lowest cleavage energy and strength in diamond

    Piezoelectric materials parameters for piezoelectric thin films in GHz applications

    Get PDF
    Piezoelectric thin films have existing and promising new applications in microwave filter technologies. The final performance depends on many parameters, and very specifically on the materials properties of each involved material. In this article, materials and properties for thin-film bulk acoustic wave resonators are discussed on some selected issues: the piezoelectric coefficients and acoustic losses of AlN, the relation of the first one with microstructural parameters, the inclusion of parasitic elements, and the merits of and problems with ferroelectric materials

    Epitaxial lithium niobate thin films grown by chemical beam epitaxy on sapphire

    No full text
    Lithium Niobate (LiNbO3) is a versatile material with a number of remarkable qualities. It finds application in optical modulators because of its electro-optic properties. Nonlinearity opens its use in bio-physical applications where particles or wires of LiNbO3 can be used as highly localized optical probes. Optical frequency conversion is another possible use, as well. One of the current commercial applications of the material is in optical modulators in telecomunication devices. Nowadays bulk crystals of the material are used. However, in order to make devices more compact and affordable it is necessary to be able to produce LiNbO3 films on suitable substrates with sufficient crystalline and optical quality

    Converse mode piezoelectric coefficient for lead zirconate titanate thin film with interdigitated electrode

    Get PDF
    The use of interdigitated electrodes (IDEs) in conjunction with ferroelectric thin films shows many attractive features for piezoelectric MEMS applications. In this work, growth of {1 0 0}-textured lead zirconate titanate (PZT) thin films was achieved on insulating MgO buffered, oxidized silicon substrates. IDEs were fabricated by lift-off techniques and cantilevers were formed by dicing. The deflection upon application of a sweeping voltage was measured as large signal response in parallel to the ferroelectric polarization (PV loop). Likewise, the small signal piezoelectric response was measured in parallel to the capacitance-voltage (CV) measurement. In this way, a complete picture of the ferroelectric-piezoelectric element was obtained. From the deflection, the in-plane piezoelectric stress in the PZT thin film was derived and, from this, the effective piezoelectric coefficients. For the latter, two types were defined: an engineering type corresponding to the average value along the IDE, which can directly be compared to coefficient of a parallel plate electrode (PPE) capacitor and a second one that approximately yields the idealized coefficient governing between the electrode fingers. The IDE structures were experimentally compared with PPE structures of identical film thickness. The resulting coefficients were of opposite sign, as expected. In spite of a much better polarization loop, the IDE device showed a lower average piezoelectric stress. The estimated peak value between the fingers was about the same as in the PPE device, corresponding to about 20 C m(-2). Nevertheless, the result is very promising for cases where compressive piezoelectric stresses are required and for preventing cracking due to large piezoelectric tensile stresses in PPE systems

    Properties of Piezoelectric Pzt Thin Films for Microactuator Applications

    Get PDF
    The piezoelectric properties of lead zirconate titanate (PZT) thin ïŹlms deposited on thick silicon substrates and thin silicon membranes were investigated using optical interferometry. The effect of the geometrical constraints and clamping effects on the piezoelectric response is discussed. The study of the dielectric permittivity and the loss as a function of the amplitude of the alternating electric field reveals that extrinsic contributions to the dielectric permittivity become active at large fields. The DC electric field has the effect of freezing out the extrinsic contributions. The inïŹ‚uence of the dielectric loss on the piezoelectric properties is discussed

    Nanocolumnar Preferentially Oriented PSZT Thin Films Deposited on Thermally Grown Silicon Dioxide

    Get PDF
    We report the first instance of deposition of preferentially oriented, nanocrystalline, and nanocolumnar strontium-doped lead zirconate titanate (PSZT) ferroelectric thin films directly on thermal silicon dioxide. No intermediate seed or activation layers were used between PSZT and silicon dioxide. The deposited thin films have been characterised using a combination of diffraction and microscopy techniques
    • 

    corecore