3 research outputs found
Integrated biocatalytic platform based on aqueous biphasic systems for the sustainable oligomerization of rutin
Rutin is a known antioxidant compound that displays a broad range of biological activities and health-related benefits but presents a low water solubility that can be overcome by its polymerization. In this work, biocompatible aqueous biphasic systems composed of the ionic liquid cholinium dihydrogen phosphate ([CH][DHph]) and the polymer poly(ethylene glycol) 600 (PEG 600) were investigated as an efficient integrated reaction–separation platform for the laccase-catalyzed oligomerization of rutin. Two different approaches were studied to reuse laccase in several oligorutin production cycles, the main difference between them being the use of monophasic or biphasic regimes during the oligomerization reaction. The use of a biphasic regime in the second approach (heterogeneous reaction medium) allowed the successful reuse of the biocatalyst in three consecutive reaction–separation cycles while achieving noteworthy rutin oligomerization yields (95% in the first cycle, 91% in the second cycle, and 89% in the last cycle). These remarkable results were caused by the combination of the increased solubility of rutin in the PEG-rich phase together with the enhanced catalytic performance of laccase in the [Ch][DHph]-rich phase, alongside with the optimization of the pH of the reaction medium straightly linked to enzyme stability. Finally, a life-cycle assessment was performed to compare this integrated reaction–separation platform to three alternative processes, reinforcing its sustainabilityThis research was supported by the Spanish Government (AEI) through the RTI2018-094482-J-I00 project. This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES. The programme is cofunded by FEDER (UE). A.P.M.T. thanks the FCT for the research contract CEECIND/2020/01867. G.E. thanks the Spanish MICIU for her Ramón y Cajal contract (RYC2018- 024846-I). A.M.-M. thanks the Programa de axudas á etapa predoutoral da Xunta de Galicia (ED481A-2018/023)S
Laccase Activity as an Essential Factor in the Oligomerization of Rutin
The enzyme-mediated polymerization of bioactive phenolic compounds, such as the flavonoid rutin, has gained interest due to the enhanced physico-chemical and biological properties of the products, which increases their potential application as a nutraceutical. In this work, the influence of enzyme activity on rutin oligomerization was evaluated in reactions with low (1000 U/L) and high (10,000 U/L) initial laccase activities. For both reactions, high molecular weight oligomer fractions showed better properties compared to lower weight oligomers. Products of the reaction with low laccase activity exhibited thermal stability and antioxidant potential similar to control reaction, but led to higher inhibitory activity of xanthine oxidase and apparent aqueous solubility. Oligomers obtained in the reaction with high laccase activity showed better apparent aqueous solubility but decreased biological activities and stability. Their low antioxidant activity was correlated with a decreased phenolic content, which could be attributed to the formation of several bonds between rutin molecules