15 research outputs found

    Lattice Boltzmann Simulation of Natural Convection in an Annulus between a Hexagonal Cylinder and a Square Enclosure

    Get PDF
    Laminar natural convection in a water filled square enclosure containing at its center a horizontal hexagonal cylinder is studied by the lattice Boltzmann method. The hexagonal cylinder is heated while the walls of the cavity are maintained at the same cold temperature. Two orientations are treated, corresponding to two opposite sides of the hexagonal cross-section which are horizontal (case I) or vertical (case II). For each case, the results are presented in terms of streamlines, isotherms, local and average convective heat transfers as a function of the dimensionless size of the hexagonal cylinder cross-section (0.1≤B≤0.4), and the Rayleigh number (103≤Ra≤106)

    Analysis of Turbulent Natural Convection by an Elliptic Relaxation Model in Tall Vertical Cavities with Linear Temperatures on Sidewalls

    Get PDF
    Turbulent natural convection of air is studied, by the elliptic-relaxation model v^2-f, in a tall vertical cavity whose hot and cold walls are maintained at linear temperatures of slopes γ_1 and γ_2, respectively. The average temperatures of the active walls are located at mid-height of the cavity. Four situations are analyzed, corresponding to γ_1=γ_2=γ (case I), γ_1=-γ_2=γ (case II), γ_1=0 and γ_2=γ (case III), γ_1=γ and γ_2=0 (case IV). These boundary conditions may be more representative or used to control heat transfer for certain systems. The effects of the slope (-1≤γ≤1), the aspect ratio of the cavity (10≤A≤80) and the average Rayleigh number (5×〖10〗^4≤〖Ra〗_m≤〖10〗^6 ) on the streamlines, isotherms, contours of the turbulent kinetic energy, heatlines, local and average Nusselt numbers are investigated. It is shown that the local and average heat transfers of cases III and IV can be deducted from those of cases I and II. The obtained dynamic and thermal fields as well as local and average heat transfers of the studied cases are quite different of those of the classical case corresponding to γ=0. A simplified procedure for calculating the average Nusselt number is also developed for each case

    Room Temperature Coherent and Voltage Tunable Terahertz Emission from Nanometer-Sized Field Effect Transistors

    Full text link
    We report on reflective electro-optic sampling measurements of TeraHertz emission from nanometer-gate-length InGaAs-based high electron mobility transistors. The room temperature coherent gate-voltage tunable emission is demonstrated. We establish that the physical mechanism of the coherent TeraHertz emission is related to the plasma waves driven by simultaneous current and optical excitation. A significant shift of the plasma frequency and the narrowing of the emission with increasing channel's current are observed and explained as due to the increase of the carriers density and drift velocity.Comment: 3 figure

    Terahertz MMICs and Antenna-in-Package Technology at 300 GHz for KIOSK Download System

    No full text
    Toward the realization of ultra-fast wireless communications systems, the inherent broad bandwidth of the terahertz (THz) band is attracting attention, especially for short-range instant download applications. In this paper, we present our recent progress on InP-based THz MMICs and packaging techniques based on low-temperature co-fibered ceramic (LTCC) technology. The transmitter MMICs are based on 80-nm InP-based high electron mobility transistors (HEMTs). Using the transmitter packaged in an E-plane split-block waveguide and compact lens receiver packaged in LTCC multilayered substrates, we tested wireless data transmission up to 27 Gbps with the simple amplitude key shifting (ASK) modulation scheme. We also present several THz antenna-in-packaging solutions based on substrate integrated waveguide (SIW) technology. A vertical hollow (VH) SIW was applied to a compact medium-gain SIW antenna and low-loss interconnection integrated in LTCC multi-layer substrates. The size of the LTCC antennas with 15-dBi gain is less than 0.1 cm(3). For feeding the antenna, we investigated an LTCC-integrated transition and polyimide transition to LTCC VH SIWs. These transitions exhibit around 1-dB estimated loss at 300 GHz and more than 35 GHz bandwidth with 10-dB return loss. The proposed package solutions make antennas and interconnections easy to integrate in a compact LTCC package with an MMIC chip for practical applications.112sciescopu
    corecore