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Laminar natural convection in a water filled square enclosure containing at its center a horizontal hexagonal cylinder is studied
by the lattice Boltzmann method. The hexagonal cylinder is heated while the walls of the cavity are maintained at the same cold
temperature. Two orientations are treated, corresponding to two opposite sides of the hexagonal cross-section which are horizontal
(case I) or vertical (case II). For each case, the results are presented in terms of streamlines, isotherms, local and average convective
heat transfers as a function of the dimensionless size of the hexagonal cylinder cross-section (0.1 ≤ 𝐵 ≤ 0.4), and the Rayleigh
number (103 ≤ Ra ≤ 106).

1. Introduction

The numerical simulation of natural convection of various
fluids in different geometries has become the most widely
used approach because of its low cost and the accuracy of
its predictions. This is justified by the availability of reliable
mathematical models and robust numerical methods that
predict the fluid flow and heat transfer characteristics in
practically all situations encountered. The lattice Boltzmann
method is relatively new compared to the classical approaches
based on the Navier-Stokes equations. This technique has
been used with a great success to simulate different physical
behaviors of magnetohydrodynamic fluids [1, 2], inhomoge-
neous mediums [3, 4], phase change materials [5, 6], flows
with chemical reactions [7], and porous media [8, 9].

The lattice Boltzmann method is easier to implement for
the numerical simulation of laminar natural flows in the com-
plex geometries. Thus, it has been successfully implemented
to predict the flow structures and heat transfers in enclosures
of different shapes [10–12]. But its performances are even
more remarkable in the simulation of natural convection in
the annulus between a rectangular enclosure and a cylinder
of circular cross-section [13–20], square cross-section [21–
23], or elliptical cross-section [24]. However, one finds in

the literature many other numerical works that treated the
natural convection in such geometries by using the Navier-
Stokes equations [25–28]. Generally, the system is heated
by the cylinder and cooled by the cavity walls which are
maintained at the same temperature.

In these studies, the effects of the shape, size, and position
of the heating body on the dynamic and thermal fields in the
cavity are analyzed. Thus, Hussain and Hussein [27] studied
the effect of the position of a circular cylinder inside a square
enclosure. These authors have shown that the position of
the horizontal cylinder has an influence on the convective
heat transfer which is proportional to the Rayleigh number.
Concerning the size effect, it has been studied by Moukalled
andAcharya [25] which showed that the average heat transfer
is proportional to the cross-section size of the cylinder placed
in the center of the cavity. The simultaneous effects of the
size and position of a circular cylinder inside a square cavity
were analyzed by Ding et al. [13]. The results found indicate
that these two parameters have a great influence on the
dynamic and thermal fields in the annulus between the
circular cross-section and the cavity walls. The effect of the
cross-section geometry of the heating cylinder on natural
convection within a square cavity is studied by Ravnik and
Škerget [28]. These authors found that a cylinder of elliptical

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 3834170, 11 pages
https://doi.org/10.1155/2017/3834170

https://doi.org/10.1155/2017/3834170


2 Mathematical Problems in Engineering

y

H

TC

TC

TC

TC
O

a

Th

L x

(a)

y

H

TC

TC

TC

TC
O

a
Th

L x

(b)

Figure 1: Studied configurations: (a) case I and (b) case II.

cross-section slightly improves the heat transfer through the
walls of the cavity.

The literature review showed that the case of a horizontal
hexagonal cylinder inserted in a square enclosure has not
been studied. For this purpose, the present work is dedicated
to the lattice Boltzmann simulation of two-dimensional natu-
ral convection around a horizontal hexagonal cylinder placed
in a square cavity filled with water. The heating cylinder is at
a hot temperature 𝑇ℎ, while the cavity walls are kept at a cold
temperature 𝑇𝐶. The effects of the Rayleigh number, the size
and orientation of the hexagonal cylinder on the streamlines,
isotherms, and local and average heat transfers are presented
and discussed below.

2. Mathematical Formulation

The system under consideration is a square cavity (𝐴 =𝐻/𝐿 = 1), filled with water (Pr = 7), and having four walls
kept at a cold temperature 𝑇𝐶. A cylinder of hexagonal cross-
section of side 𝑎 is placed in the center of the cavity and
maintained at a hot temperature𝑇ℎ.The hexagon dimensions
are such that 0.1 ≤ 𝐵 = 𝑎/𝐿 ≤ 0.4. Two orientations
are considered, corresponding to two opposite sides of the
hexagonal cross-section which are horizontal (case I) or
vertical (case II) (Figure 1). The dimensions of the cavity
and the temperature difference (𝑇ℎ − 𝑇𝐶) are varied so that103 ≤ Ra = 𝑔𝛽(𝑇ℎ − 𝑇𝐶)𝐿3/𝛼] ≤ 106.

The thermophysical properties of water are considered
constants, except the density in the buoyancy term where
the Boussinesq approximation is adopted. To simulate the
fluid flow and heat transfer in the physical domain, the
lattice Boltzmann method (LBM) using the two distribution
functions 𝑓 and 𝑔, respectively, for the dynamic and thermal
fields is implemented [29].

For the dynamic field:

𝑓𝑖 (r + ciΔ𝑡, 𝑡 + Δ𝑡) = 𝑓𝑖 (r, 𝑡)
− 1𝜏𝑓 (𝑓𝑖 (r, 𝑡) − 𝑓

eq
𝑖 (r, 𝑡))

+ Δ𝑡𝐹𝑖.
(1)

For the thermal field:

𝑔𝑖 (r + ciΔ𝑡, 𝑡 + Δ𝑡) = 𝑔𝑖 (r, 𝑡)
− 1𝜏𝑔 (𝑔𝑖 (r, 𝑡) − 𝑔

eq
𝑖 (r, 𝑡)) . (2)

The relaxation times for the flow and temperature fields
are 𝜏𝑓 and 𝜏𝑔, respectively. They are related to the kinematic
viscosity and thermal diffusivity by

] = 𝑐2𝑠 (𝜏𝑓 − 0.5) Δ𝑡,
𝛼 = 𝑐2𝑠 (𝜏𝑔 − 0.5) Δ𝑡.

(3)

Note that the restriction 𝜏 > 0.5 should be satisfied for both
relaxation times to ensure that the kinematic viscosity and
thermal diffusivity are positive.

The external force appearing in (1) is given by

𝐹𝑖 = 𝜌𝜔𝑖𝛽(𝑇 − 𝑇𝐶)𝑐2𝑠 g ⋅ ci. (4)
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Δ𝑡 denotes the lattice time step. 𝑓eq𝑖 and 𝑔eq𝑖 are the equi-
librium distribution functions which are calculated with the
following relation:

𝑓eq𝑖 = 𝜌𝜔𝑖(1 + ci ⋅ V𝑐2𝑠 + (ci ⋅ V)22𝑐4𝑠 − V ⋅ V2𝑐2𝑠 )

et 𝑔eq𝑖 = 𝑇𝜔𝑖 (1 + ci ⋅ V𝑐2𝑠 ) .
(5)

𝑐𝑠 is the speed of sound. It is related to the velocity of the
particles by

𝑐𝑠 = 𝑐√3 . (6)

For both functions 𝑓 and 𝑔, we adopt the D2Q9 model
which contains nine propagation velocities of particles from
a node r to its neighbors r + ciΔ𝑡.

For the D2Q9 model, the weighting factor 𝜔𝑖 and the
discrete velocities ci are defined as follows:

𝜔𝑖 =
{{{{{{{{{{{{{{{

49 𝑖 = 1
19 𝑖 = 2, 3, 4, 5
136 𝑖 = 6, 7, 8, 9,

(7)

ci

=
{{{{{{{{{{{{{

(0, 0) 𝑖 = 1
𝑐 (− cos(𝑖𝜋2 ) , − sin(𝑖𝜋2 )) 𝑖 = 2, 3, 4, 5
√2𝑐 (− cos([2𝑖 + 1] 𝜋4 ) , − sin([2𝑖 + 1] 𝜋4 )) 𝑖 = 6, 7, 8, 9.

(8)

On the active walls, the boundary conditions for𝑓𝑖 and 𝑔𝑖
are given by

𝑓𝑖 = 𝑓𝑗,
𝑔𝑖 = 𝑇𝑤 (𝜔𝑖 + 𝜔𝑗) − 𝑔𝑗 (9)

with 𝑇𝑤 = 𝑇ℎ or 𝑇𝐶 and 𝑗 = 𝑖 + 2 if 𝑖 = 2, 3, 6, 7 or 𝑗 = 𝑖 − 2 if𝑖 = 4, 5, 8, 9.
The macroscopic quantities such as the density, velocity,

and temperature are calculated by

𝜌 = 9∑
𝑖=1

𝑓𝑖,

𝜌V = 9∑
𝑖=1

𝑓𝑖ci,

𝑇 = 9∑
𝑖=1

𝑔𝑖.

(10)

Table 1: Validation in terms of Nu𝐶 and 𝜓max for different values of
Ra and 𝑅.

(a) Nu𝐶

𝑅/𝐿 Ra Moukalled and
Acharya [25]

Ding et al.
[13]

Present
study

0.1
104 2.071 2.061 2.081
105 3.825 3.752 3.750
106 6.107 6.071 6.083

0.2
104 3.331 3.219 3.224
105 5.080 4.896 4.874
106 9.374 8.864 8.892

0.3
104 5.826 5.350 5.366
105 6.212 6.202 6.186
106 11.620 11.91 11.861

(b) 𝜓max

𝑅/𝐿 Moukalled and Acharya [25] Present study
0.1 0.2 0.3 0.1 0.2 0.3

Ra
104 2.44 1.43 0.7 2.42 1.46 0.68
105 14.3 11.8 7.19 14.42 11.93 7.22
106 35.7 33.9 30 35.66 34.02 30.21

On a given cold wall, local and average Nusselt numbers
are given, respectively, by

Nu𝐶𝐿 = 𝜕𝑇𝜕𝑛 ,
Nu𝐶 = ∫1

0
Nu𝐶𝐿d𝜏

(11)

on the horizontal walls 𝑛 = 𝑌 and 𝜏 = 𝑋 and inversely on the
vertical ones.

3. Numerical Procedure and Validation

In order to numerically integrate the equations (1) and (2),
a computational mesh of 150 × 150 is used. In fact, it was
found that the effect of a finer mesh on the results (Nu𝐶,𝜓max, and 𝜓min) is negligible. The convergence is considered
to be reached when the difference on the velocity and the
temperature at each point of the mesh is less than 10−8
between two successive iterations.

For the computer code validation, the closest studies
found in the literature are related to natural convection of air
in an annulus between a cold square outer cylinder and a hot
circular inner cylinder of radius 𝑅. The results of our code
are compared in Tables 1(a) and 1(b) with those obtained by
Moukalled and Acharya [25] and Ding et al. [13]. The good
agreement on Nu𝐶 (Table 1(a)) and 𝜓max (Table 1(b)) may be
noted for different values of Ra and 𝑅.

For Ra = 106 and 𝑅/𝐿 = 0.1, in Figure 2 the dimen-
sionless velocity and temperature profiles at mid-height
of the cavity are compared (between 𝑋 = 0.6 and 1). The
figure shows the excellent agreement on the velocity and



4 Mathematical Problems in Engineering

Moukalled and Acharya (1996)
Present work

Ra = 106

0.7 0.8 0.9 1.00.6
X

−300

−200

−100

V
0

100

200

300

R/L = 0.1

(a)

Moukalled and Acharya (1996)
Present work

0.0

0.2

0.4

0.6

0.8

1.0

T

Ra = 106

0.7 0.8 0.9 1.00.6
X

R/L = 0.1

(b)

Figure 2: Validation for Ra = 106 and 𝑅/𝐿 = 0.1: (a) vertical velocity and (b) temperature.

temperature of the air (Pr = 0.71) that vary widely, especially
near the hot circular wall.

4. Results and Discussion

4.1. Streamlines and Isotherms

4.1.1. Case I. For case I, Ra = 103 and different values of 𝐵
(size of the heating body), the streamlines and isotherms are
shown in Figures 3(a) and 3(b), respectively. Generally, the
flow structures are symmetrical with respect to the center,
the vertical and horizontal centerlines of the cavity. On
either side of the vertical centerline, the convective cells have
opposite rotations and their number increases with 𝐵, but
their intensities decrease while remaining in general quite
low. For𝐵 = 0.4, there are four cells that occupy the corners of
the cavity. When 𝐵 decreases, the size of these cells increases
which allows those which rotate in the same sense to merge
partially (𝐵 = 0.2) or totally (𝐵 = 0.1). Thus, for 𝐵 = 0.1, we
obtained only two separate cells that surround the cylinder
and each of them occupies a vertical half of the cavity.

Due to the low intensity of the fluid flow (Ra = 103), the
heat transfer between the cylinder and the cavity walls occurs
mainly by conduction. Indeed, Figure 3(b) shows that, for a
given𝐵, the isotherms are almost symmetrical with respect to
the vertical and horizontal median and indicate that the heat
transfer is proportional to the hexagon size. For 𝐵 = 0.4, the
isotherms show a good heat transfer in the vicinities of the
horizontal walls and the hexagon vertices that are near the
vertical walls of the cavity, while for 𝐵 = 0.1, the isotherms
are almost circular with a spacing that increases with distance
from the hexagon due to its small size.

Regardless of the size of the heated hexagonal cylinder,
the fluid flow becomes much more intense for Ra = 106 and

the symmetry with respect to the horizontal median is no
longer observed (Figure 4(a)). Given that the temperature of
the water is higher at the top of the cavity, the flow intensity
is more important in this zone. For 𝐵 = 0.4, we note the
appearance of two small counter-rotating cells between the
top horizontal walls of the hexagonal cylinder and the cavity.
These convective cells are similar to those observed in the
natural flows of Rayleigh-Bénard, while two large cells where
each surrounds two small cells occupy the space between the
cavity vertical walls and the hexagon. The intensity of the
upper small cell is higher. For a small size of the hexagon,
there are two large counter-rotating cells, each of which
occupies a vertical part of the cavity, while in the vicinity of
the bottomhorizontal wall of the cavity, the fluid is stationary.

The isotherms of Figure 4(b) show that, regardless of
the size of the heating body, the convective heat transfer is
important over all sides of the hexagon and the top horizontal
wall of the cavity. In addition, for 𝐵 = 0.4, the isotherms show
important thermal gradients in the whole domain including
the bottom of the cavity. In contrast, for low values of 𝐵,
the increase of the Rayleigh number promotes the thermal
exchanges with the top horizontal cold wall and reduces them
with the bottom one. Indeed, below the hexagon, the water
temperature is practically uniform and equal to that of the
cold walls. Note also the formation of a thermal plume when
the size of the hexagon is small enough (𝐵 = 0.2 or 0.1).
4.1.2. Case II. For this new position of the hexagon (case II)
and different values of 𝐵, the streamlines and isotherms are
presented for Ra = 103 in Figures 5(a) and 5(b), respectively.
Except for 𝐵 = 0.4, the flow structures and their intensities
have not undergone significant changes compared with case
I. However, for 𝐵 = 0.4, we have for this case only two large
counter-rotating cells along the cold vertical walls, each of
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(a)

(b)

Figure 3: Contours for case I with Ra = 103 and 𝐵 = 0.4, 0.2, and 0.1 (left to right): (a) streamlines and (b) isotherms.

(a)

(b)

Figure 4: Contours for case I with Ra = 106 and 𝐵 = 0.4, 0.2, and 0.1 (left to right): (a) streamlines and (b) isotherms.
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(a)

(b)

Figure 5: Contours for case II with Ra = 103 and 𝐵 = 0.4, 0.2, and 0.1 (left to right): (a) streamlines and (b) isotherms.

which surrounds two small cells of a low intensity. As for the
isotherms, they show also here that the heat transfer between
the hexagonal cylinder and the walls of the cavity is mainly
by conduction.The isotherms of case II can be deduced from
those of case I by a simple rotation of 90∘ around the center
of the cavity. Thus, for 𝐵 = 0.4, the heat transfer is relatively
better in the vicinity of the vertical cold walls and around
the middle of the horizontal ones. While for 𝐵 = 0.1 or 0.2,
the isotherms remain circulars, so almost insensitive to the
hexagon orientation.

By switching to Ra = 106 (Figures 6(a) and 6(b)), for low
values of 𝐵, the influence of the orientation of the hexagon
on the streamlines and isotherms is negligible. Only a slight
effect on the thermal plume that is located over the top of
the hot body is noticeable (Figures 4(a) and 4(b)). However,
for 𝐵 = 0.4, the dynamic and thermal fields have undergone
significant changes relative to case I.Thus, the two small cells
above the hexagon have undergone considerable reductions
in size and intensity. While the most important changes are
undergone by the isotherms, this will result in significant
differences on local heat transfer along the cold walls of the
cavity.

4.2. Heat Transfer. In conduction regime (Ra = 103), the
variations of the local Nusselt numbers along the four cold
walls of the cavity are presented in Figure 7 for the two cases
and different values of 𝐵. Regardless of the value of 𝐵 and
the case considered, the evolution of Nu𝐶𝐿 on two opposite
cold walls is almost identical and Nu𝐶𝐿 on the horizontal

(vertical) wall of case II can be deduced from that on the
vertical (horizontal) wall of case I.

For small sizes of the hexagon (𝐵 = 0.1 or 0.2), the varia-
tion of the local Nusselt number is generally independent of
the cold wall considered and the orientation of the hot body
(case I or II). The maximum and minimum values of Nu𝐶𝐿
are always obtained, respectively, at the middle (𝑋 = 0.5 or𝑌 = 0.5) and the ends (𝑋 = 0 and 1 or 𝑌 = 0 and 1) of the
considered wall. However, for 𝐵 = 0.4, Nu𝐶𝐿 is highly depen-
dent on the hexagon orientation in the cavity. Indeed, in case
I, Nu𝐶𝐿 reached amaximum of 6.5 and 8.5 around themiddle
of the horizontal and vertical walls, respectively. While in
case II, these same maximums of 6.5 and 8.5 are achieved
around the middle of the vertical and horizontal walls,
respectively.

For Ra = 106 and different values of 𝐵, the variations of
Nu𝐶𝐿 on the horizontal and vertical cold walls are shown in
Figures 8(a)–8(d). Firstly it is noted that the variation of Nu𝐶𝐿
on the top and bottom horizontal walls is no longer the same
for all values of 𝐵. The hexagon orientation (case I or II) has
virtually no influence on Nu𝐶𝐿 along all the cold walls when
the hot body size is small enough (𝐵 = 0.1 and 0.2). Nu𝐶𝐿(𝑋)
is proportional to 𝐵 on the top cold wall and negligible on
the bottom one. Due to the thermal plume shown by the
isotherms (Figures 4 and 6), Nu𝐶𝐿(𝑋) is maximum at the
middle of the top cold wall. However, the maximum value
of Nu𝐶𝐿(𝑌) is reached above the middle of the vertical walls.
This behavior is caused by the progressive displacement of the
cell centers to the top of the domain when Ra increases.
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(a)

(b)

Figure 6: Contours for case II with Ra = 106 and 𝐵 = 0.4, 0.2, and 0.1 (left to right): (a) streamlines and (b) isotherms.
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Figure 7: Variations of Nu𝐶𝐿 on cold walls for Ra = 103 and different values of 𝐵: (a) horizontal (case I) or vertical (case II) and (b) vertical
(case I) or horizontal (case II).
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Figure 8: Variations of Nu𝐶𝐿 for Ra = 106 and different values of 𝐵: (a, b) horizontal walls and (c, d) vertical walls.

When the hexagon size is large (𝐵 = 0.4), its orientation
has significant influence on the local heat transfer along
the four walls of the cavity. For both cases, Nu𝐶𝐿(𝑋) along
the top horizontal wall is maximum at 𝑋 ∼ 0.3 and 0.7
(Nu𝐶𝐿,max ∼ 18.5 (case I) or 17 (case II)) and minimum at𝑋 ∼ 0.5 (Nu𝐶𝐿,min ∼ 3 (cas I) or 6 (case II)). This behavior
is due to the two small Rayleigh-Bénard cells that are formed
at the top of the hexagon. Along the bottom cold wall, the
heat transfer remains relatively low and Nu𝐶𝐿(𝑋) reaches its
maximum at 𝑋 ∼ 0.5. Concerning the two vertical walls,
because of the symmetry, the variation ofNu𝐶𝐿(𝑌) is the same
in each case. For case I, the fluid recirculation is reduced to
the mid-height of the cavity, which gives a minimum local

Nusselt number at 𝑌 ∼ 0.55 with two peaks on either sides of
this position. For case II, two sides of the hexagon are parallel
to the vertical walls, resulting in a fairly regular local heat
transfer around the middle of the walls. The maximum of
Nu𝐶𝐿(𝑌) is located at the top where the intensity of the water
flow is higher.

For both cases and different values of 𝐵, the average
Nusselt numbers on all the cold walls of the cavity as a
function of the Rayleigh number are presented in Figures
9(a)–9(c). For 𝐵 = 0.1 and 0.2, Nu𝐶 is independent of the
hexagon orientation (case I or II) and it is always higher on
the top horizontal wall. After a slight decrease between Ra =103 and 104, Nu𝐶 on the top horizontal wall increases rapidly
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Figure 9: Average Nusselt numbers on the cold walls of cases I and II as a function of Ra: (a) 𝐵 = 0.4, (b) 𝐵 = 0.2, and (c) 𝐵 = 0.1.

with Ra, while on the vertical walls, this growth is moderate.
However, on the bottom horizontal wall, Nu𝐶 is decreasing
due to the displacement of the centers of the convective cells
to the top of the cavity.

For 𝐵 = 0.4, the proximity of the hot sides of the
hexagon and the cold walls of the enclosure leads to higher
convective heat exchanges.Theorientation of the hexagonhas
an appreciable effect on Nu𝐶 of all the cold walls, especially
for high Rayleigh numbers. Overall, Nu𝐶 is higher in case I
and the difference with case II can reach about 20% on the
vertical walls if Ra = 106.
5. Conclusion

The lattice Boltzmann method was used to study the natural
convection of water around a hot horizontal hexagonal
cylinder inserted in the center of a square enclosure with cold

walls. For two orientations of the hexagon (cases I and II), the
effects of the size 𝐵 (0.1 ≤ 𝐵 ≤ 0.4) and the Rayleigh number
Ra (103 ≤ Ra ≤ 106) were studied.

For each case, it was found that the flow intensity and
the number of convective cells depend on the size of the
hexagon and the Rayleigh number. However, the effect of the
orientation of the hexagon on the flow structures and heat
transfers in the cavity is important only for high values of 𝐵.
The average heat transfers through the walls of the cavity are
proportional to 𝐵 and are more favored in case I, if 𝐵 and Ra
are high.

Nomenclature

𝑎: Side of the hexagon𝐵: Dimensionless size of the hexagon
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ci: Discrete vector velocity𝑐𝑠: Sound speed
D2Q9: Lattice arrangement𝑓𝑖(r, 𝑡): Dynamical distribution function𝑓eq𝑖 (r, 𝑡): Equilibrium dynamical distribution

function𝐹𝑖: Directional imposed body force
g: Acceleration due to gravity𝑔𝑖(r, 𝑡): Thermal distribution function𝑔eq𝑖 (r, 𝑡): Equilibrium thermal distribution function𝐻: Cavity height𝐿: Cavity width𝑛: Normal
Nu: Nusselt number
Pr: Prandtl number
Ra: Rayleigh number𝑅: Radius𝑇: Dimensionless temperature
V: Macroscopic vector velocity𝑋,𝑌: Dimensionless Cartesian coordinates.

Greek Letters

𝛼: Thermal diffusivity𝛽: Thermal expansion coefficientΔ𝑡: Time increment
]: Kinetic viscosity𝜌: Fluid density𝜏: Tangential𝜏𝑓: Hydrodynamic relaxation parameter𝜏𝑔: Thermal relaxation parameter𝜓: Stream function𝜔𝑖: Weighting factor.

Subscripts

𝐶: Convection, coldℎ: Hot𝑖: Direction𝐿: Local
max: Maximum
min: Minimum𝑤: Wall.
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[28] J. Ravnik andL. Škerget, “Anumerical study of nanofluid natural
convection in a cubic enclosurewith a circular and an ellipsoidal
cylinder,” International Journal of Heat and Mass Transfer, vol.
89, pp. 596–605, 2015.

[29] X. He, S. Chen, and G. D. Doolen, “A novel thermal model for
the lattice Boltzmann method in incompressible limit,” Journal
of Computational Physics, vol. 146, no. 1, pp. 282–300, 1998.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


