149 research outputs found

    Stochastics of bedform dimensions

    Get PDF
    Often river dunes are considered as regular bed patterns, with a mean dune height and a mean dune length. In reality however, river dunes are threedimensional and irregular features that cannot be fully described by their mean values. In fact, dune dimensions can be considered as stochastic variables. Their probability distribution can be characterized by a mean value and variance. The stochastic properties of dune dimensions are relevant for (see e.g. Van der Mark et al., 2005):\ud • Shipping - highest crests\ud • Pipelines & cables - deepest troughs\ud • Modelling cross-strata sets - troughs, dune heights\ud • Modelling vertical sorting - troughs\ud • Modelling bed roughness - dune heights\ud In the present research the stochastics of crest elevation, trough elevation and dune height are investigated by analysing three sets of flume experiments

    On modeling the variability of bedform dimensions

    Get PDF
    ABSTRACT: Bedforms are irregular features that cannot easily be described by mean values. The variations in the geometric dimensions affect the bed roughness, and they are important in the modeling of vertical sorting and in modeling the thickness of cross-strata sets. The authors analyze the variability of bedform dimensions for three sets of flume experiments, considering PDFs of bedform height, trough elevation and crest elevation divided by its mean value. It appears that the dimensionless standard deviation of the bedform height is within a narrow range for nearly all experiments. This appears to be valid for the trough elevation and crest elevation, as well. For some modeling purposes, it seems sufficient to assume that the standard deviation is a constant, so that the variation in bedform dimension can be modeled by only predicting the mean bedform dimension.

    The anatomy of exhumed river-channel belts: Bedform to belt‐scale river kinematics of the Ruby Ranch Member, Cretaceous Cedar Mountain Formation, Utah, USA

    Get PDF
    Many published interpretations of ancient fluvial systems have relied on observations of extensive outcrops of thick successions. This paper, in contrast, demonstrates that a regional understanding of palaeoriver kinematics, depositional setting and sedimentation rates can be interpreted from local sedimentological measurements of bedform and barform strata. Dune and bar strata, channel planform geometry and bed topography are measured within exhumed fluvial strata exposed as ridges in the Ruby Ranch Member of the Cretaceous Cedar Mountain Formation, Utah, USA. The ridges are composed of lithified stacked channel belts, representing at least five or six re‐occupations of a single‐strand channel. Lateral sections reveal well‐preserved barforms constructed of subaqueous dune cross‐sets. The topography of palaeobarforms is preserved along the top surface of the outcrops. Comparisons of the channel‐belt centreline to local palaeotransport directions indicate that channel planform geometry was preserved through the re‐occupations, rather than being obscured by lateral migration. Rapid avulsions preserved the state of the active channel bed and its individual bars at the time of abandonment. Inferred minimum sedimentation durations for the preserved elements, inferred from cross‐set thickness distributions and assumed bedform migration rates, vary within a belt from one to ten days. Using only these local sedimentological measurements, the depositional setting is interpreted as a fluvial megafan, given the similarity in river kinematics. This paper provides a systematic methodology for the future synthesis of vertical and planview data, including the drone‐equipped 2020 Mars Rover mission, to exhumed fluvial and deltaic strata

    Modeling and Observations of Outlet Canyons from Lake Overflow Floods on Early Mars

    Get PDF
    Numerous observations from both orbital remote sensing [1-3] and Mars Curiosity [4] suggest that lakes were once part of the martian landscape. From orbital data, one of the key lines of evidence for past paleolakes is the existence of several hundred valley network-fed basins usually craters that have outlet valleys that remain perched above their floors. The existence of outlets requires that water ponded to the point that it overflowed confining topography. Beyond recognizing these landforms, there has been only limited work reconstructing the morphometry, formative hydrology, and incision history for these outlets. Here, we describe our recently published observations of outlets and ongoing numerical modeling looking at these factors

    Spatial Grain Size Sorting in Eolian Ripples and Estimation of Wind Conditions on Planetary Surfaces: Application to Meridiani Planum, Mars

    Get PDF
    The landscape seen by the Mars Exploration Rover (MER) Opportunity at Meridiani Planum is dominated by eolian (wind-blown) ripples with concentrated surface lags of hematitic spherules and fragments. These ripples exhibit profound spatial grain size sorting, with well-sorted coarse-grained crests and poorly sorted, generally finer-grained troughs. These ripples were the most common bed form encountered by Opportunity in its traverse from Eagle Crater to Endurance Crater. Field measurements from White Sands National Monument, New Mexico, show that such coarse-grained ripples form by the different transport modes of coarse- and fine-grain fractions. On the basis of our field study, and simple theoretical and experimental considerations, we show how surface deposits of coarse-grained ripples can be used to place tight constraints on formative wind conditions on planetary surfaces. Activation of Meridiani Planum coarse-grained ripples requires a wind velocity of 70 m/s (at a reference elevation of 1 m above the bed). From images by the Mars Orbiter Camera (MOC) of reversing dust streaks, we estimate that modern surface winds reach a velocity of at least 40 m/s and hence may occasionally activate these ripples. The presence of hematite at Meridiani Planum is ultimately related to formation of concretions during aqueous diagenesis in groundwater environments; however, the eolian concentration of these durable particles may have led to the recognition from orbit of this environmentally significant landing site

    The effect of remote sensing resolution limits on aeolian sandstone measurements and the reconstruction of ancient dune fields on Mars: Numerical experiment using the Page Sandstone, Earth

    Get PDF
    The distribution of cross‐set thicknesses is important data for reconstructing ancient aeolian dune fields from the strata they accumulated, but most aeolian strata on Mars must be observed from satellite. We hypothesize that remote sensing resolution limits will affect cross‐set thickness measurements and the dune‐field reconstructions that follow. Here we test this hypothesis using a numerical experiment mimicking the effects of satellite image resolution limits performed on a distribution of aeolian cross‐set thicknesses measured in the field from the Jurassic Page Sandstone, Arizona, USA. Page set thicknesses are exponentially distributed, representing the accumulations of dry dune fields (no water table interactions with the dunes) in a state of net‐sediment bypass. When observed from satellite, set‐thickness measurements increase as adjacent sets become indistinguishable, based on the map‐view distance between their upper and lower bounding surfaces. This is termed the exposure distance of a cross set and is a function of (1) the set thickness, (2) the dip of the outcrop surface, and (3) the number of satellite image pixels required to detect a set (detection limit). By running experiments using outcrop dips from 1° to 60° and detection limits from 0.75 to 2.50 m (3 to 10 High‐Resolution Imaging Science Experiment pixels), we find that gently sloping surfaces (< 13°) at all detection limits are associated with the least blending of adjacent sets, conserving the net‐bypass interpretation made from the true set thicknesses. Although these results are specific to the Page, they can be used as a guide for future Mars work

    Universal relation with regime transition for sediment transport in fine-grained rivers

    Get PDF
    Fine-grained sediment (grain size under 2,000 Îźm) builds floodplains and deltas, and shapes the coastlines where much of humanity lives. However, a universal, physically based predictor of sediment flux for fine-grained rivers remains to be developed. Herein, a comprehensive sediment load database for fine-grained channels, ranging from small experimental flumes to megarivers, is used to find a predictive algorithm. Two distinct transport regimes emerge, separated by a discontinuous transition for median bed grain size within the very fine sand range (81 to 154 Îźm), whereby sediment flux decreases by up to 100-fold for coarser sand-bedded rivers compared to river with silt and very fine sand beds. Evidence suggests that the discontinuous change in sediment load originates from a transition of transport mode between mixed suspended bed load transport and suspension-dominated transport. Events that alter bed sediment size near the transition may significantly affect fluviocoastal morphology by drastically changing sediment flux, as shown by data from the Yellow River, China, which, over time, transitioned back and forth 3 times between states of high and low transport efficiency in response to anthropic activities

    Universal relation with regime transition for sediment transport in fine-grained rivers

    Get PDF
    Fine-grained sediment (grain size under 2,000 Îźm) builds floodplains and deltas, and shapes the coastlines where much of humanity lives. However, a universal, physically based predictor of sediment flux for fine-grained rivers remains to be developed. Herein, a comprehensive sediment load database for fine-grained channels, ranging from small experimental flumes to megarivers, is used to find a predictive algorithm. Two distinct transport regimes emerge, separated by a discontinuous transition for median bed grain size within the very fine sand range (81 to 154 Îźm), whereby sediment flux decreases by up to 100-fold for coarser sand-bedded rivers compared to river with silt and very fine sand beds. Evidence suggests that the discontinuous change in sediment load originates from a transition of transport mode between mixed suspended bed load transport and suspension-dominated transport. Events that alter bed sediment size near the transition may significantly affect fluviocoastal morphology by drastically changing sediment flux, as shown by data from the Yellow River, China, which, over time, transitioned back and forth 3 times between states of high and low transport efficiency in response to anthropic activities

    Cosmic-ray strangelets in the Earth's atmosphere

    Full text link
    If strange quark matter is stable in small lumps, we expect to find such lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays. Following recent astrophysical models, we predict the strangelet flux at the top of the atmosphere, and trace the strangelets' behavior in atmospheric chemistry and circulation. We show that several strangelet species may have large abundances in the atmosphere; that they should respond favorably to laboratory-scale preconcentration techniques; and that they present promising targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex
    • …
    corecore