455 research outputs found

    Pre-clinical evaluation of dual targeting of the GPCRs CaSR and V2R as therapeutic strategy for autosomal dominant polycystic kidney disease

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations of PKD1 or PKD2 genes, is characterized by development and growth of cysts causing progressive kidney enlargement. Reduced resting cytosolic calcium and increased cAMP levels associated with the tonic action of vasopressin are two central biochemical defects in ADPKD. Here we show that co-targeting two GPCRs, the vasopressin V2 receptor (V2R) and the calcium sensing receptor, using the novel V2R antagonist lixivaptan in combination with the calcimimetic R-568, reduced cyst progression in two animal models of human PKD. Lixivaptan is expected to have a safer liver profile compared to tolvaptan, the only drug approved to delay PKD progression, based on computational model results and initial clinical evidence. PCK rat and Pkd1RC/RC mouse littermates were fed without or with lixivaptan (0.5%) and R-568 (0.025% for rats and 0.04% for mice), alone or in combination, for 7 (rats) or 13 (mice) weeks. In PCK rats, the combined treatment strongly decreased kidney weight, cyst and fibrosis volumes by 20%, 49%, and 73%, respectively, compared to untreated animals. In Pkd1RC/RC mice, the same parameters were reduced by 20%, 56%, and 69%, respectively. In both cases the combined treatment appeared nominally more effective than the individual drugs used alone. These data point to an intriguing new application for two existing drugs in PKD treatment. The potential for synergy between these two compounds suggested in these animal studies, if confirmed in appropriate clinical investigations, would represent a welcome advancement in the treatment of ADPKD

    The Vasopressin Receptor 2 Mutant R137L Linked to the Nephrogenic Syndrome of Inappropriate Antidiuresis (NSIAD) Signals through an Alternative Pathway that Increases AQP2 Membrane Targeting Independently of S256 Phosphorylation

    Get PDF
    NSIAD is a rare X-linked condition, caused by activating mutations in the AVPR2 gene coding for the vasopressin V2 receptor (V2R) associated with hyponatremia, despite undetectable plasma vasopressin levels. We have recently provided in vitro evidence that, compared to V2R-wt, expression of activating V2R mutations R137L, R137C and F229V cause a constitutive redistribution of the AQP2 water channel to the plasma membrane, higher basal water permeability and significantly higher basal levels of p256-AQP2 in the F229V mutant but not in R137L or R137C. In this study, V2R mutations were expressed in collecting duct principal cells and the associated signalling was dissected. V2R-R137L and R137C mutants had significantly higher basal pT269-AQP2 levels -independently of S256 and PKA-which were reduced to control by treatment with Rho kinase (ROCK) inhibitor. Interestingly, ROCK activity was found significantly higher in V2R-R137L along with activation of the Gα12/13-Rho-ROCK pathway. Of note, inhibition of ROCK reduced the basal elevated osmotic water permeability to control. To conclude, our data demonstrate for the first time that the gain-of-function mutation of the V2R, R137L causing NSIAD, signals through an alternative PKA-independent pathway that increases AQP2 membrane targeting through ROCK-induced phosphorylation at S/T269 independently of S256 of AQP2

    dDAVP Downregulates the AQP3-Mediated Glycerol Transport via V1aR in Human Colon HCT8 Cells

    Get PDF
    Vasopressin (AVP) plays a key function in controlling body water and salt balance through the activation of the vasopressin receptors V1aR and V2R. Abnormal secretion of AVP can cause the syndrome of inappropriate antidiuresis that leads to hyponatremia, which is an electrolyte disorder often observed in the elderly hospitalized and oncologic patients. Beyond kidneys, the colonic epithelium modulates water and salt homeostasis. The water channel AQP3, expressed in villus epithelial cells is implicated in water absorption across human colonic surface cells. Here, the action of dDAVP, a stable vasopressin analog, was evaluated on the AQP3 expression and function using human colon HCT8 cells as an experimental model. Confocal and Western Blotting analysis revealed that HCT8 cells express both V1aR and V2R. Long-term (72 h) treatment with dDAVP reduced glycerol uptake and cell viability. These effects were prevented by SR49059, a synthetic antagonist of V1aR, but not by tolvaptan, a specific V2R antagonist. Of note, the SR49059 action was impaired by DFP00173, a selective inhibitor of AQP3. Interestingly, compared to the normal colonic mucosa, in the colon of patients with adenocarcinoma, the expression of V1aR was significantly decreased. These findings were confirmed by gene expression analysis with RNA-Seq data. Overall, data suggest that dDAVP, through the V1aR dependent pathway, reduces AQP3 mediated glycerol uptake, a process that is reversed in adenocarcinoma, suggesting that the AVP-dependent AQP3 pathway may represent a novel target in colon diseases associated with abnormal cell growth

    In vivo treatment with calcilytic of CaSR knock-in mice ameliorates renal phenotype reversing downregulation of the vasopressin-AQP2 pathway

    Get PDF
    Abstract: High concentrations of urinary calcium counteract vasopressin action via the activation of the Calcium-Sensing Receptor (CaSR) expressed in the luminal membrane of the collecting duct cells, which impairs the trafficking of aquaporin-2 (AQP2). In line with these findings, we provide evidence that, with respect to wild-type mice, CaSR knock-in (KI) mice mimicking autosomal dominant hypocalcaemia, display a significant decrease in the total content of AQP2 associated with significantly higher levels of AQP2 phosphorylation at Ser261, a phosphorylation site involved in AQP2 degradation. Interestingly, KI mice also had significantly higher levels of phosphorylated p38MAPK, a downstream effector of CaSR and known to phosphorylate AQP2 at Ser261. Moreover, ATF1 phosphorylated at Ser63, a transcription factor downstream of p38MAPK, was significantly higher in KI. In addition, KI mice had significantly higher levels of AQP2-targeting miRNA137 consistent with a post-transcriptional downregulation of AQP2. In vivo treatment of KI mice with the calcilytic JTT-305, a CaSR antagonist, increased AQP2 expression and reduced AQP2-targeting miRNA137 levels in KI mice. Together, these results provide direct evidence for a critical role of CaSR in impairing both short-term vasopressin response by increasing AQP2-pS261, as well as AQP2 abundance, via the p38MAPK-ATF1-miR137 pathway. (Figure presented.). Key points: Calcium-Sensing Receptor (CaSR) activating mutations are the main cause of autosomal dominant hypocalcaemia (ADH) characterized by inappropriate renal calcium excretion leading to hypocalcaemia and hypercalciuria. Current treatments of ADH patients with parathyroid hormone, although improving hypocalcaemia, do not improve hypercalciuria or nephrocalcinosis. In vivo treatment with calcilytic JTT-305/MK-5442 ameliorates most of the ADH phenotypes of the CaSR knock-in mice including hypercalciuria or nephrocalcinosis and reverses the downregulation of the vasopressin-sensitive aquaporin-2 (AQP2) expression, providing direct evidence for a critical role of CaSR in impairing vasopressin response. The beneficial effect of calcilytic in reducing the risk of renal calcification may occur in a parathyroid hormone-independent action through vasopressin-dependent inhibition of cAMP synthesis in the thick ascending limb and in the collecting duct. The amelioration of most of the abnormalities in calcium metabolism including hypercalciuria, renal calcification, and AQP2-mediated osmotic water reabsorption makes calcilytic a good candidate as a novel therapeutic agent for ADH

    Olive Leaf Extract (OLE) impaired vasopressin-induced aquaporin-2 trafficking through the activation of the calcium-sensing receptor

    Get PDF
    Vasopressin (AVP) increases water permeability in the renal collecting duct through the regulation of aquaporin-2 (AQP2) trafficking. Several disorders, including hypertension and inappropriate antidiuretic hormone secretion (SIADH), are associated with abnormalities in water homeostasis. It has been shown that certain phytocompounds are beneficial to human health. Here, the effects of the Olive Leaf Extract (OLE) have been evaluated using in vitro and in vivo models. Confocal studies showed that OLE prevents the vasopressin induced AQP2 translocation to the plasma membrane in MCD4 cells and rat kidneys. Incubation with OLE decreases the AVP-dependent increase of the osmotic water permeability coefficient (Pf). To elucidate the possible effectors of OLE, intracellular calcium was evaluated. OLE increases the intracellular calcium through the activation of the Calcium Sensing Receptor (CaSR). NPS2143, a selective CaSR inhibitor, abolished the inhibitory effect of OLE on AVP-dependent water permeability. In vivo experiments revealed that treatment with OLE increases the expression of the CaSR mRNA and decreases AQP2 mRNA paralleled by an increase of the AQP2-targeting miRNA-137. Together, these findings suggest that OLE antagonizes vasopressin action through stimulation of the CaSR indicating that this extract may be beneficial to attenuate disorders characterized by abnormal CaSR signaling and affecting renal water reabsorption

    A protein kinase a-independent pathway controlling aquaporin 2 trafficking as a possible cause for the syndrome of inappropriate antidiuresis associated with polycystic kidney disease 1 haploinsufficiency.

    Get PDF
    Renal water reabsorption is controlled by vasopressin (AVP) which binds to V2 receptors resulting in PKA activation, phosphorylation of AQP2 at serine 256 (pS256) and translocation to the plasma membrane. Besides S256, AVP causes dephosphorylation of S261. Recent studies showed that cyclin-dependent kinases can phosphorylate S261 AQP2 peptides in vitro. In an attempt to investigate the possible role of cdks on AQP2 phosphorylation, we identified a new PKA-independent pathway regulating AQP2 trafficking. In ex-vivo kidney slices and MDCK-AQP2 cells, R-roscovitine, a specific cdks inhibitor, increased pS256 and decreased pS261. The changes in AQP2 phosphorylation were paralleled by an increase in cell surface AQP2 expression and osmotic water permeability in the absence of forskolin stimulation. Of note, R-roscovitine didn’t alter cAMP-dependent PKA activity. Because phosphorylation results from the balance between kinase and phosphatase activity, we evaluated the possible contribution of protein phosphatases PP1, PP2A and PP2B. Of these, R-roscovitine treatment specifically reduced PP2A protein expression and activity in MDCK cells. Interestingly, in PKD1+/- mice displaying a syndrome of inappropriate antidiuresis with high level of pS256 despite unchanged AVP and cAMP, we found a reduced PP2A expression and activity and reduced pS261. Similarly to what previously found in PKD1+/- mice, R-roscovitine treatment caused a significant decrease in intracellular calcium in MDCK cells. Our data indicate that a reduced activity of PP2A, secondary to reduced intracellular Ca2+ levels, promotes AQP2 trafficking independently of the AVP-PKA axis. This pathway may be relevant for explaining pathological states characterized by inappropriate AVP secretion and positive water balance

    Podocyte autophagy is associated with foot process effacement and proteinuria in patients with minimal change nephrotic syndrome

    Get PDF
    Autophagy is a cellular mechanism involved in the bulk degradation of proteins and turnover of organelle. Several studies have shown the significance of autophagy of the renal tubular epithelium in rodent models of tubulointerstitial disorder. However, the role of autophagy in the regulation of human glomerular diseases is largely unknown. The current study aimed to demonstrate morphological evidence of autophagy and its association with the ultrastructural changes of podocytes and clinical data in patients with idiopathic nephrotic syndrome, a disease in which patients exhibit podocyte injury. The study population included 95 patients, including patients with glomerular disease (minimal change nephrotic syndrome [MCNS], n = 41; idiopathic membranous nephropathy [IMN], n = 37) and 17 control subjects who underwent percutaneous renal biopsy. The number of autophagic vacuoles and the grade of foot process effacement (FPE) in podocytes were examined by electron microscopy (EM). The relationships among the expression of autophagic vacuoles, the grade of FPE, and the clinical data were determined. Autophagic vacuoles were mainly detected in podocytes by EM. The microtubule-associated protein 1 light chain 3 (LC3)-positive area was co-localized with the Wilms tumor 1 (WT1)-positive area on immunofluorescence microscopy, which suggested that autophagy occurred in the podocytes of patients with MCNS. The number of autophagic vacuoles in the podocytes was significantly correlated with the podocyte FPE score (r = -0.443, p = 0.004), the amount of proteinuria (r = 0.334, p = 0.033), and the level of serum albumin (r = -0.317, p = 0.043) in patients with MCNS. The FPE score was a significant determinant for autophagy after adjusting for the age in a multiple regression analysis in MCNS patients (p = 0.0456). However, such correlations were not observed in patients with IMN or in control subjects. In conclusion, the results indicated that the autophagy of podocytes is associated with FPE and severe proteinuria in patients with MCNS. The mechanisms underlying the activation of autophagy in association with FPE in podocytes should be further investigated in order to elucidate the pathophysiology of MCNS

    In vitro and in vivo nutraceutical characterization of two chickpea accessions: Differential effects on hepatic lipid over-accumulation

    Get PDF
    Dietary habits are crucially important to prevent the development of lifestyle-associated diseases. Diets supplemented with chickpeas have numerous benefits and are known to improve body fat composition. The present study was undertaken to characterize two genetically and phenotypically distinct accessions, MG_13 and PI358934, selected from a global chickpea collection. Rat hepatoma FaO cells treated with a mixture of free fatty acids (FFAs) (O/P) were used as an in vitro model of hepatic steatosis. In parallel, a high-fat diet (HFD) animal model was also established. In vitro and in vivo studies revealed that both chickpea accessions showed a significant antioxidant ability. However, only MG_13 reduced the lipid over-accumulation in steatotic FaO cells and in the liver of HFD fed mice. Moreover, mice fed with HFD + MG_13 displayed a lower level of glycemia and aspartate aminotransferase (AST) than HFD mice. Interestingly, exposure to MG_13 prevented the phosphorylation of the inflammatory nuclear factor kappa beta (NF-kB) which is upregulated during HFD and known to be linked to obesity. To conclude, the comparison of the two distinct chickpea accessions revealed a beneficial effect only for the MG_13. These findings highlight the importance of studies addressing the functional characterization of chickpea biodiversity and nutraceutical properties

    Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR) are associated with increased ER to cytosol calcium gradient

    Get PDF
    In humans, gain-of-function mutations of the calcium-sensing receptor (CASR) gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA) and reducing expression of Plasma Membrane Calcium-ATPase (PMCA). Wild-type CaSR (hCaSR-wt) and its gain-of-function (hCaSR-R990G; hCaSR-N124K) variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate) receptor inputs to cell function

    Novel Urinary Glycan Biomarkers Predict Cardiovascular Events in Patients With Type 2 Diabetes: A Multicenter Prospective Study With 5-Year Follow Up (U-CARE Study 2)

    Get PDF
    Background: Although various biomarkers predict cardiovascular event (CVE) in patients with diabetes, the relationship of urinary glycan profile with CVE in patients with diabetes remains unclear. Methods: Among 680 patients with type 2 diabetes, we examined the baseline urinary glycan signals binding to 45 lectins with different specificities. Primary outcome was defined as CVE including cardiovascular disease, stroke, and peripheral arterial disease. Results: During approximately a 5-year follow-up period, 62 patients reached the endpoint. Cox proportional hazards analysis revealed that urinary glycan signals binding to two lectins were significantly associated with the outcome after adjustment for known indicators of CVE and for false discovery rate, as well as increased model fitness. Hazard ratios for these lectins (+1 SD for the glycan index) were UDA (recognizing glycan: mixture of Man5 to Man9): 1.78 (95% CI: 1.24-2.55, P = 0.002) and Calsepa [High-Man (Man2-6)]: 1.56 (1.19-2.04, P = 0.001). Common glycan binding to these lectins was high-mannose type of N-glycans. Moreover, adding glycan index for UDA to a model including known confounders improved the outcome prediction [Difference of Harrel's C-index: 0.028 (95% CI: 0.001-0.055, P = 0.044), net reclassification improvement at 5-year risk increased by 0.368 (0.045-0.692, P = 0.026), and the Akaike information criterion and Bayesian information criterion decreased from 725.7 to 716.5, and 761.8 to 757.2, respectively]. Conclusion: The urinary excretion of high-mannose glycan may be a valuable biomarker for improving prediction of CVE in patients with type 2 diabetes, and provides the rationale to explore the mechanism underlying abnormal N-glycosylation occurring in patients with diabetes at higher risk of CVE
    • …
    corecore