17 research outputs found

    Paediatric arterial ischemic stroke: acute management, recent advances and remaining issues

    Full text link

    Creation and implementation of an electronic health record note for quality improvement in pediatric epilepsy: Practical considerations and lessons learned.

    No full text
    ObjectiveTo describe the development of the Pediatric Epilepsy Outcome-Informatics Project (PEOIP) at Alberta Children's Hospital (ACH), which was created to provide standardized, point-of-care data entry; near-time data analysis; and availability of outcome dashboards as a baseline on which to pursue quality improvement.MethodsStakeholders involved in the PEOIP met weekly to determine the most important outcomes for patients diagnosed with epilepsy, create a standardized electronic note with defined fields (patient demographics, seizure and syndrome type and frequency and specific outcomes- seizure type and frequency, adverse effects, emergency department visits, hospitalization, and care pathways for clinical decision support. These were embedded in the electronic health record from which the fields were extracted into a data display platform that provided patient- and population-level dashboards updated every 36 hours. Provider satisfaction and family experience surveys were performed to assess the impact of the standardized electronic note.ResultsIn the last 5 years, 3,245 unique patients involving 13, 831 encounters had prospective, longitudinal, standardized epilepsy data accrued via point-of-care data entry into an electronic note as part of routine clinical care. A provider satisfaction survey of the small number of users involved indicated that the vast majority believed that the note makes documentation more efficient. A family experience survey indicated that being provided with the note was considered "valuable" or "really valuable" by 86% of respondents and facilitated communication with family members, school, and advocacy organizations.SignificanceThe PEOIP serves as a proof of principle that information obtained as part of routine clinical care can be collected in a prospective, standardized, efficient manner and be used to construct filterable process/outcome dashboards, updated in near time (36 hours). This information will provide the necessary baseline data on which multiple of QI projects to improve meaningful outcomes for children with epilepsy will be based

    Pediatric Moyamoya Revascularization Perioperative Care: A Modified Delphi Study

    No full text
    BACKGROUND: Surgical revascularization decreases the long-term risk of stroke in children with moyamoya arteriopathy but can be associated with an increased risk of stroke during the perioperative period. Evidence-based approaches to optimize perioperative management are limited and practice varies widely. Using a modified Delphi process, we sought to establish expert consensus on key components of the perioperative care of children with moyamoya undergoing indirect revascularization surgery and identify areas of equipoise to define future research priorities. METHODS: Thirty neurologists, neurosurgeons, and intensivists practicing in North America with expertise in the management of pediatric moyamoya were invited to participate in a three-round, modified Delphi process consisting of a 138-item practice patterns survey, anonymous electronic evaluation of 88 consensus statements on a 5-point Likert scale, and a virtual group meeting during which statements were discussed, revised, and reassessed. Consensus was defined as ≥ 80% agreement or disagreement. RESULTS: Thirty-nine statements regarding perioperative pediatric moyamoya care for indirect revascularization surgery reached consensus. Salient areas of consensus included the following: (1) children at a high risk for stroke and those with sickle cell disease should be preadmitted prior to indirect revascularization; (2) intravenous isotonic fluids should be administered in all patients for at least 4 h before and 24 h after surgery; (3) aspirin should not be discontinued in the immediate preoperative and postoperative periods; (4) arterial lines for blood pressure monitoring should be continued for at least 24 h after surgery and until active interventions to achieve blood pressure goals are not needed; (5) postoperative care should include hourly vital signs for at least 24 h, hourly neurologic assessments for at least 12 h, adequate pain control, maintaining normoxia and normothermia, and avoiding hypotension; and (6) intravenous fluid bolus administration should be considered the first-line intervention for new focal neurologic deficits following indirect revascularization surgery. CONCLUSIONS: In the absence of data supporting specific care practices before and after indirect revascularization surgery in children with moyamoya, this Delphi process defined areas of consensus among neurosurgeons, neurologists, and intensivists with moyamoya expertise. Research priorities identified include determining the role of continuous electroencephalography in postoperative moyamoya care, optimal perioperative blood pressure and hemoglobin targets, and the role of supplemental oxygen for treatment of suspected postoperative ischemia
    corecore