605 research outputs found

    Huge negative differential conductance in Au-H2 molecular nanojunctions

    Full text link
    Experimental results showing huge negative differential conductance in gold-hydrogen molecular nanojunctions are presented. The results are analyzed in terms of two-level system (TLS) models: it is shown that a simple TLS model cannot produce peaklike structures in the differential conductance curves, whereas an asymmetrically coupled TLS model gives perfect fit to the data. Our analysis implies that the excitation of a bound molecule to a large number of energetically similar loosely bound states is responsible for the peaklike structures. Recent experimental studies showing related features are discussed within the framework of our model.Comment: 9 pages, 8 figure

    Buffering of genetic dominance by allele-specific protein complex assembly

    Get PDF

    Conductance of Pd-H nanojunctions

    Get PDF
    Results of an experimental study of palladium nanojunctions in hydrogen environment are presented. Two new hydrogen-related atomic configurations are found, which have a conductances of ~0.5 and ~1 quantum unit (2e^2/h). Phonon spectrum measurements demonstrate that these configurations are situated between electrodes containing dissolved hydrogen. The crucial differences compared to the previously studied Pt-H_2 junctions, and the possible microscopic realizations of the new configurations in palladium-hydrogen atomic-sized contacts are discussed.Comment: 4 pages, 4 figure

    Nonlinear semigroups for nonlocal conservation laws

    Get PDF
    We investigate a class of nonlocal conservation laws in several space dimensions, where the continuum average of weighted nonlocal interactions are considered over a finite horizon. We establish well-posedness for a broad class of flux functions and initial data via semigroup theory in Banach spaces and, in particular, via the celebrated Crandall–Liggett Theorem. We also show that the unique mild solution satisfies a Kružkov-type nonlocal entropy inequality. Similarly to the local case, we demonstrate an efficient way of proving various desirable qualitative properties of the unique solution

    Searching for variable stars in Galactic Open Clusters

    Get PDF
    A long-term project, aiming at systematic search for variable stars in Galactic Open Clusters, was started at the Geneva Observatory in 2002. We have been observing regularly a sample of twenty-seven Galactic Open Clusters in the U, B, V Geneva filters. The goal is to identify and to study their variable stars, as well as the connection between the variable stars in a cluster and the cluster properties. We present the status of this work in progress, and show preliminary results for one of these clusters, IC 4651.Comment: To appear in the proceedings of Stellar Pulsation: Challenges for theory and observations Conference, Santa Fe, NM, US

    Exploring the pi+ pi+ interaction in lattice QCD

    Full text link
    An effective residual interaction for a meson-meson system is computed in lattice QCD. We describe the theoretical framework and present its application to the I=2 channel S-wave interaction of the pi pi system. Scattering phase shifts are also computed and compared to experimental results.Comment: LaTeX2e, 29 pages, 14 eps figure

    Hall effect in quasi one-dimensional organic conductors

    Full text link
    We study the Hall effect in a system of weakly coupled Luttinger Liquid chains, using a Memory function approach to compute the Hall constant in the presence of umklapp scattering along the chains. In this approximation, the Hall constant decomposes into two terms: a high-frequency term and a Memory function term. For the case of zero umklapp scattering, where the Memory function vanishes, the Hall constant is simply the band value, in agreement with former results in a similar model with no dissipation along the chains. With umklapp scattering along the chains, we find a power-law temperature dependance of the Hall constant. We discuss the applications to quasi 1D organic conductors at high temperatures.Comment: Proceedings of the ISCOM conference "Sixth International Symposium on Crystalline Organic Metals, Superconductors, and Ferromagnets", Key West, Florida, USA (Sept. 2005), to be plublished in the Journal of Low Temperature Physic

    The effect of irradiation-induced disorder on the conductivity and critical temperature of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu(SCN)2_2

    Get PDF
    We have introduced defects into clean samples of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu(SCN)2_2 in order to determine their effect on the temperature dependence of the conductivity and the critical temperature TcT_{\rm c}. We find a violation of Matthiessen's rule that can be explained by a model of the conductivity involving a defect-assisted interlayer channel which acts in parallel with the band-like conductivity. We observe an unusual dependence of TcT_{\rm c} on residual resistivity which is not consistent with the generalised Abrikosov-Gor'kov theory for an order parameter with a single component, providing an important constraint on models of the superconductivity in this material
    • …
    corecore