1,748 research outputs found
Sum-Rate Maximization in Two-Way AF MIMO Relaying: Polynomial Time Solutions to a Class of DC Programming Problems
Sum-rate maximization in two-way amplify-and-forward (AF) multiple-input
multiple-output (MIMO) relaying belongs to the class of difference-of-convex
functions (DC) programming problems. DC programming problems occur as well in
other signal processing applications and are typically solved using different
modifications of the branch-and-bound method. This method, however, does not
have any polynomial time complexity guarantees. In this paper, we show that a
class of DC programming problems, to which the sum-rate maximization in two-way
MIMO relaying belongs, can be solved very efficiently in polynomial time, and
develop two algorithms. The objective function of the problem is represented as
a product of quadratic ratios and parameterized so that its convex part (versus
the concave part) contains only one (or two) optimization variables. One of the
algorithms is called POlynomial-Time DC (POTDC) and is based on semi-definite
programming (SDP) relaxation, linearization, and an iterative search over a
single parameter. The other algorithm is called RAte-maximization via
Generalized EigenvectorS (RAGES) and is based on the generalized eigenvectors
method and an iterative search over two (or one, in its approximate version)
optimization variables. We also derive an upper-bound for the optimal values of
the corresponding optimization problem and show by simulations that this
upper-bound can be achieved by both algorithms. The proposed methods for
maximizing the sum-rate in the two-way AF MIMO relaying system are shown to be
superior to other state-of-the-art algorithms.Comment: 35 pages, 10 figures, Submitted to the IEEE Trans. Signal Processing
in Nov. 201
Power Allocation Based on SEP Minimization in Two-Hop Decode-and-Forward Relay Networks
The problem of optimal power allocation among the relays in a two-hop
decode-and-forward cooperative relay network with independent Rayleigh fading
channels is considered. It is assumed that only the relays that decode the
source message correctly contribute in data transmission. Moreover, only the
knowledge of statistical channel state information is available. A new simple
closed-form expression for the average symbol error probability is derived.
Based on this expression, a new power allocation method that minimizes the
average symbol error probability and takes into account the constraints on the
total average power of all the relay nodes and maximum instant power of each
relay node is developed. The corresponding optimization problem is shown to be
a convex problem that can be solved using interior point methods. However, an
approximate closed-form solution is obtained and shown to be practically more
appealing due to significant complexity reduction. The accuracy of the
approximation is discussed. Moreover, the so obtained closed-form solution
gives additional insights into the optimal power allocation problem. Simulation
results confirm the improved performance of the proposed power allocation
scheme as compared to other schemes.Comment: 27 pages, 5 figures, submitted to the IEEE Trans. Signal Processing
in Feb. 201
Cooperative Precoding/Resource Allocation Games under Spectral Mask and Total Power Constraints
The use of orthogonal signaling schemes such as time-, frequency-, or
code-division multiplexing (T-, F-, CDM) in multi-user systems allows for
power-efficient simple receivers. It is shown in this paper that by using
orthogonal signaling on frequency selective fading channels, the cooperative
Nash bargaining (NB)-based precoding games for multi-user systems, which aim at
maximizing the information rates of all users, are simplified to the
corresponding cooperative resource allocation games. The latter provides
additional practically desired simplifications to transmitter design and
significantly reduces the overhead during user cooperation. The complexity of
the corresponding precoding/resource allocation games, however, depends on the
constraints imposed on the users. If only spectral mask constraints are
present, the corresponding cooperative NB problem can be formulated as a convex
optimization problem and solved efficiently in a distributed manner using dual
decomposition based algorithm. However, the NB problem is non-convex if total
power constraints are also imposed on the users. In this case, the complexity
associate with finding the NB solution is unacceptably high. Therefore, the
multi-user systems are categorized into bandwidth- and power-dominant based on
a bottleneck resource, and different manners of cooperation are developed for
each type of systems for the case of two-users. Such classification guarantees
that the solution obtained in each case is Pareto-optimal and actually can be
identical to the optimal solution, while the complexity is significantly
reduced. Simulation results demonstrate the efficiency of the proposed
cooperative precoding/resource allocation strategies and the reduced complexity
of the proposed algorithms.Comment: 33 pages, 8 figures, Submitted to the IEEE Trans. Signal Processing
in Oct. 200
On Impedance Bandwidth of Resonant Patch Antennas Implemented Using Structures with Engineered Dispersion
We consider resonant patch antennas, implemented using loaded
transmission-line networks and other exotic structures having engineered
dispersion. An analytical expression is derived for the ratio of radiation
quality factors of such antennas and conventional patch antennas loaded with
(reference) dielectrics. In the ideal case this ratio depends only on the
propagation constant and wave impedance of the structure under test, and it can
be conveniently used to study what kind of dispersion leads to improved
impedance bandwidth. We illustrate the effect of dispersion by implementing a
resonant patch antenna using a periodic network of LC elements. The analytical
results predicting enhanced impedance bandwidth compared to the reference
results are validated using a commercial circuit simulator. Discussion is
conducted on the practical limitations for the use of the proposed expression.Comment: 4 pages, 7 figure
Fast directional spatially localized spherical harmonic transform
We propose a transform for signals defined on the sphere that reveals their
localized directional content in the spatio-spectral domain when used in
conjunction with an asymmetric window function. We call this transform the
directional spatially localized spherical harmonic transform (directional
SLSHT) which extends the SLSHT from the literature whose usefulness is limited
to symmetric windows. We present an inversion relation to synthesize the
original signal from its directional-SLSHT distribution for an arbitrary window
function. As an example of an asymmetric window, the most concentrated
band-limited eigenfunction in an elliptical region on the sphere is proposed
for directional spatio-spectral analysis and its effectiveness is illustrated
on the synthetic and Mars topographic data-sets. Finally, since such typical
data-sets on the sphere are of considerable size and the directional SLSHT is
intrinsically computationally demanding depending on the band-limits of the
signal and window, a fast algorithm for the efficient computation of the
transform is developed. The floating point precision numerical accuracy of the
fast algorithm is demonstrated and a full numerical complexity analysis is
presented.Comment: 12 pages, 5 figure
Cooperative Jamming for Secure Communications in MIMO Relay Networks
Secure communications can be impeded by eavesdroppers in conventional relay
systems. This paper proposes cooperative jamming strategies for two-hop relay
networks where the eavesdropper can wiretap the relay channels in both hops. In
these approaches, the normally inactive nodes in the relay network can be used
as cooperative jamming sources to confuse the eavesdropper. Linear precoding
schemes are investigated for two scenarios where single or multiple data
streams are transmitted via a decode-and-forward (DF) relay, under the
assumption that global channel state information (CSI) is available. For the
case of single data stream transmission, we derive closed-form jamming
beamformers and the corresponding optimal power allocation. Generalized
singular value decomposition (GSVD)-based secure relaying schemes are proposed
for the transmission of multiple data streams. The optimal power allocation is
found for the GSVD relaying scheme via geometric programming. Based on this
result, a GSVD-based cooperative jamming scheme is proposed that shows
significant improvement in terms of secrecy rate compared to the approach
without jamming. Furthermore, the case involving an eavesdropper with unknown
CSI is also investigated in this paper. Simulation results show that the
secrecy rate is dramatically increased when inactive nodes in the relay network
participate in cooperative jamming.Comment: 30 pages, 7 figures, to appear in IEEE Transactions on Signal
Processin
Robust Beamforming for Security in MIMO Wiretap Channels with Imperfect CSI
In this paper, we investigate methods for reducing the likelihood that a
message transmitted between two multiantenna nodes is intercepted by an
undetected eavesdropper. In particular, we focus on the judicious transmission
of artificial interference to mask the desired signal at the time it is
broadcast. Unlike previous work that assumes some prior knowledge of the
eavesdropper's channel and focuses on maximizing secrecy capacity, we consider
the case where no information regarding the eavesdropper is available, and we
use signal-to-interference-plus-noise-ratio (SINR) as our performance metric.
Specifically, we focus on the problem of maximizing the amount of power
available to broadcast a jamming signal intended to hide the desired signal
from a potential eavesdropper, while maintaining a prespecified SINR at the
desired receiver. The jamming signal is designed to be orthogonal to the
information signal when it reaches the desired receiver, assuming both the
receiver and the eavesdropper employ optimal beamformers and possess exact
channel state information (CSI). In practice, the assumption of perfect CSI at
the transmitter is often difficult to justify. Therefore, we also study the
resulting performance degradation due to the presence of imperfect CSI, and we
present robust beamforming schemes that recover a large fraction of the
performance in the perfect CSI case. Numerical simulations verify our
analytical performance predictions, and illustrate the benefit of the robust
beamforming schemes.Comment: 10 pages, 5 figures; to appear, IEEE Transactions on Signal
Processing, 201
Separation of Reliability and Secrecy in Rate-Limited Secret-Key Generation
For a discrete or a continuous source model, we study the problem of
secret-key generation with one round of rate-limited public communication
between two legitimate users. Although we do not provide new bounds on the
wiretap secret-key (WSK) capacity for the discrete source model, we use an
alternative achievability scheme that may be useful for practical applications.
As a side result, we conveniently extend known bounds to the case of a
continuous source model. Specifically, we consider a sequential key-generation
strategy, that implements a rate-limited reconciliation step to handle
reliability, followed by a privacy amplification step performed with extractors
to handle secrecy. We prove that such a sequential strategy achieves the best
known bounds for the rate-limited WSK capacity (under the assumption of
degraded sources in the case of two-way communication). However, we show that,
unlike the case of rate-unlimited public communication, achieving the
reconciliation capacity in a sequential strategy does not necessarily lead to
achieving the best known bounds for the WSK capacity. Consequently, reliability
and secrecy can be treated successively but not independently, thereby
exhibiting a limitation of sequential strategies for rate-limited public
communication. Nevertheless, we provide scenarios for which reliability and
secrecy can be treated successively and independently, such as the two-way
rate-limited SK capacity, the one-way rate-limited WSK capacity for degraded
binary symmetric sources, and the one-way rate-limited WSK capacity for
Gaussian degraded sources.Comment: 18 pages, two-column, 9 figures, accepted to IEEE Transactions on
Information Theory; corrected typos; updated references; minor change in
titl
- …