
1

Fast Directional Spatially Localized
Spherical Harmonic Transform

Zubair Khalid, Student Member, IEEE, Rodney A. Kennedy, Fellow, IEEE, Salman Durrani, Senior Member, IEEE,
Parastoo Sadeghi, Senior Member, IEEE, Yves Wiaux, Member, IEEE, and Jason D. McEwen, Member, IEEE

Abstract—We propose a transform for signals defined on the
sphere that reveals their localized directional content in the
spatio-spectral domain when used in conjunction with an asym-
metric window function. We call this transform the directional
spatially localized spherical harmonic transform (directional
SLSHT) which extends the SLSHT from the literature whose use-
fulness is limited to symmetric windows. We present an inversion
relation to synthesize the original signal from its directional-
SLSHT distribution for an arbitrary window function. As an
example of an asymmetric window, the most concentrated band-
limited eigenfunction in an elliptical region on the sphere is pro-
posed for directional spatio-spectral analysis and its effectiveness
is illustrated on the Mars topographic data-set. Finally, since such
typical data-sets on the sphere are of considerable size and the
directional SLSHT is intrinsically computationally demanding
depending on the band-limits of the signal and window, a fast
algorithm for the efficient computation of the transform is
developed. The floating point precision numerical accuracy of the
fast algorithm is demonstrated and a full numerical complexity
analysis is presented.

Index Terms—Signal analysis, spherical harmonics, 2-sphere.

EDICS Category: MDS-APPL, DSP-TFSR.

I. INTRODUCTION

Signals that are inherently defined on the sphere appear
in various fields of science and engineering, such as medi-
cal image analysis [1], geodesy [2], computer graphics [3],
planetary science [4], electromagnetic inverse problems [5],
cosmology [6], 3D beamforming [7] and wireless channel
modeling [8]. In order to analyze and process signals on the
sphere, many signal processing techniques have been extended
from the Euclidean domain to the spherical domain [2], [9]–
[23].
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Due to the ability of wavelets to resolve localized signal
content in both space and scale, wavelets have been extensively
investigated for analyzing signals on the sphere [9], [13]–[15],
[19]–[23] and have been utilized in various applications (e.g.,
in astrophysics [24]–[29] and geophysics [4], [30], [31]).
Some of the wavelet techniques on the sphere also incorporate
directional phenomena in the spatial-scale decomposition of a
signal (e.g., [21]–[23]). As an alternative to spatial-scale de-
composition, spatio-spectral (spatial-spectral) techniques have
also been developed and applied for localized spectral analysis,
spectral estimation and spatially varying spectral filtering of
signals [10], [12], [18], [32], [33]. The spectral domain is
formed through the spherical harmonic transform which serves
as a counterpart of the Fourier transform for signals on the
sphere [5], [34]–[36].

The localized spherical harmonic transform, composed of
spatial windowing followed by spherical harmonic transform,
was first devised in [18] for localized spectral analysis. We
note that the localized spherical harmonic transform was
defined in [18] for azimuthally asymmetric (i.e., directional)
window functions, however, it was applied and investigated
for azimuthally symmetric functions only. Furthermore, a
spectrally truncated azimuthally symmetric window function
was used for spatial localization [18]. Due to spectral trun-
cation, the window used for spatial localization may not
be concentrated in the region of interest. This issue was
resolved in [32], where azimuthally symmetric eigenfunctions
obtained from the Slepian concentration problem on the sphere
were used as window functions (the Slepian concentration
problem is studied for arbitrary regions on the sphere in
[2]). Following [18], the spatially localized spherical harmonic
transform (SLSHT) for signals on the sphere has been devised
in [10] to obtain the spatio-spectral representation of signals
for azimuthally symmetric window functions, where the effect
of different window functions on the SLSHT distribution is
studied. Subsequently, the SLSHT has been used to perform
spatially varying spectral filtering [12], again with azimuthally
symmetric window functions.

In obtaining the SLSHT distribution for spatio-spectral
representation of a signal, the use of an azimuthally symmetric
window function provides mathematical simplifications, how-
ever, such an approach cannot discriminate localized direc-
tional features in the spatio-spectral domain. This motivates
the use of asymmetric window functions in the spatio-spectral
transformation of a signal using the SLSHT. In order to
serve this objective, we employ the definition of the localized
spherical harmonic transform in [18] and define the SLSHT
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and the SLSHT distributions using azimuthally asymmetric
window functions for spatial localization. Since the use of an
asymmetric window function enables the transform to reveal
directional features in the spatio-spectral domain, we call the
proposed transform the directional SLSHT. We also provide
a harmonic analysis of the proposed transform and present
an inversion relation to recover the signal from its directional
SLSHT distribution.

Since the directional SLSHT distribution of a signal is
required to be computed for each spatial position and for
each spectral component, and data-sets on the sphere are of
considerable size (e.g., three million samples on the sphere for
current data-sets [37] and fifty million samples for forthcom-
ing data-sets [38]), the evaluation of the directional SLSHT
distribution is computationally challenging. We develop fast
algorithms for this purpose. Through experimental results we
show the numerical accuracy and efficient computation of
the proposed directional SLSHT transform. Furthermore, due
to the fact that the proposed directional SLSHT distribution
depends on the window function used for spatial localization,
we analyze the asymmetric band-limited window function
with nominal concentration in an elliptical region around the
north pole, which is obtained from the Slepian concentration
problem on the sphere. We also illustrate, through an example,
the capability of the proposed directional SLSHT to reveal
directional features in the spatio-spectral domain.

The remainder of the paper is structured as follows. In
Section II, we review mathematical preliminaries related to the
signals on the sphere, which are required in the sequel. We
present the formulation of the directional SLSHT, its harmonic
analysis and signal reconstruction from the SLSHT distribution
in Section III. Different algorithms for the evaluation of the
SLSHT distribution are provided in Section IV and the detailed
analysis of the asymmetric window function is presented in
Section V. In Section VI, we show timing and accuracy
results of our algorithms and an illustration of the transform.
Concluding remarks are presented in Section VII.

II. MATHEMATICAL BACKGROUND

In order to clarify the adopted notation, we review some
mathematical background for signals defined on the sphere
and the rotation group.

A. Signals on the Sphere

In this work, we consider the square integrable complex
functions f(x̂) defined on unit sphere S2 , {u ∈ R3 :
|u| = 1}, where | · | denotes Euclidian norm, x̂ ≡ x̂(θ, φ) ,
(sin θ cosφ, sin θ sinφ, cos θ)T ∈ R3 is a unit vector and
parameterizes a point on the unit sphere with θ ∈ [0, π] de-
noting the co-latitude and φ ∈ [0, 2π) denoting the longitude.
The inner product of two functions f and h on S2 is defined
as [39]

〈f, h〉 ,
∫
S2
f(x̂)h(x̂) ds(x̂), (1)

where (·) denotes the complex conjugate, ds(x̂) = sin θdθdφ
and the integration is carried out over the unit sphere. With the

inner product in (1), the space of square integrable complex
valued functions on the sphere forms a complete Hilbert space
L2(S2). Also, the inner product in (1) induces a norm ‖f‖ ,
〈f, f〉1/2. We refer the functions with finite induced norm as
signals on the sphere.

The Hilbert space L2(S2) is separable and the spherical
harmonics form the archetype complete orthonormal set of
basis functions. The spherical harmonics, Y m` (x̂) = Y m` (θ, φ),
for degree ` ≥ 0 and order |m| ≤ ` are defined as [5], [36]

Y m` (θ, φ) = Nm
` Pm` (cos θ)eimφ, (2)

where Nm
` =

√
2`+1
4π

(`−m)!
(`+m)! denotes the normalization con-

stant and Pm` are the associated Legendre polynomials [36].
With the above definitions, the spherical harmonics form
an orthonormal set of basis functions, i.e., they satisfy
〈Y m` , Y m

′

`′ 〉 = δ``′δmm′ , where δ``′ is the Kronecker delta.
By completeness and orthonormality of the spherical har-

monics, we can expand any signal f ∈ L2(S2) as

f(x̂) =

∞∑
`=0

∑̀
m=−`

(
f
)m
`
Y m` (x̂), (3)

where (
f
)m
`

, 〈f, Y m` 〉 =

∫
S2
f(x̂)Y m` (x̂) ds(x̂) (4)

denotes the spherical harmonic coefficient of degree ` and or-
der m. The signal f is said to be band-limited with maximum
spherical harmonic degree Lf if

(
f
)m
`

= 0, ∀` > Lf .

B. Rotations on the Sphere and Wigner-D Functions

Rotations on the sphere are often parameterized using Euler
angles (α, β, γ) ∈ SO(3), where α ∈ [0, 2π), β ∈ [0, π] and
γ ∈ [0, 2π) [36]. Using the ‘zyz’ Euler convention, we define
the rotation operator Dρ, for ρ = (α, β, γ) ∈ SO(3), which
rotates a function on a sphere in the sequence of γ rotation
around z-axis, then β rotation about y-axis followed by a α
rotation around z-axis. The spherical harmonic coefficient of a
rotated signal Dρf is related to the coefficients of the original
signal by

(
Dρf

)m
`

=
∑̀

m′=−`

D`
m,m′(ρ)

(
f
)m′

`
, ρ = (α, β, γ), (5)

where D`
m,m′(ρ) denotes the Wigner-D function [36] of

degree ` and orders m and m′ and is given by

D`
m,m′(ρ) = D`

m,m′(α, β, γ) (6)

= e−imαd`m,m′(β) e−im
′γ , ρ = (α, β, γ),

where d`m,m′(β) is the Wigner-d function [36].

C. Signals on the Rotation Group SO(3)

For ` ≥ 0 and m,m′ ∈ Z such that |m|, |m′| ≤ `, the
Wigner-D functions in (6) form a complete set of orthogonal
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functions for the space L2(SO(3)) of functions defined on the
rotation group SO(3) and follow the orthogonality relation∫

SO(3)
D`
m,m′(ρ)Dp

q,q′(ρ) dρ =
8π2

2`+ 1
δ`pδmqδm′q′ , (7)

where dρ = dα sinβdβdγ and the integral is a triple integral
over all rotations (α, β, γ) ∈ SO(3) [36]. Thus, any function
f ∈ L2(SO(3)) may be expressed as

f(ρ) =

∞∑
`=0

∑̀
m=−`

`′∑
m=−`′

(
f
)`
m,m′D

`
m,m′(ρ), (8)

where (
f
)`
m,m′ =

2`+ 1

8π2

∫
SO(3)

f(ρ)D`
m,m′(ρ) dρ. (9)

The signal f is said to be band-limited with maximum degree
Lf if

(
f
)`
m,m′ = 0, ∀` > Lf .

D. Discretization of S2 and SO(3)

In order to represent functions on S2 and SO(3), it is nec-
essary to adopt appropriate tessellation schemes to discretize
both the unit sphere domain and the Euler angle domain of
SO(3). We consider tessellation schemes that support a sam-
pling theorem for band-limited functions, which is equivalent
to supporting an exact quadrature.

For the unit sphere domain, we adopt the equiangular tessel-
lation scheme [35] defined as SL = {θnθ = π(2nθ+1)/(2L+
1), φnφ = 2πnφ/(2L + 1) : 0 ≤ nθ ≤ L, 0 ≤ nφ ≤ 2L},
which is a grid of (L+1)×(2L+1) sample points on the sphere
(including repeated samples of the south pole) that keeps the
sampling in θ and φ independent. For a band-limited function
on the sphere f ∈ L2(S2) with maximum spherical harmonic
degree Lf , the sampling on the grid SLf ensures that all
information of the function is captured in the finite set of
samples and, moreover, that exact quadrature can be performed
[35]. Note that this sampling theorem was developed only
recently [35] and requires approximately half as many samples
on the sphere as required by alternative equiangular sampling
theorems on the sphere [34].

For the Euler angle representation of the rotation group
SO(3), we consider the equiangular tessellation scheme EL =
{αnα = 2πnα/(2L + 1), βnβ = 2πnβ/(2L + 1), γnγ =
2πnγ/(2L + 1) : 0 ≤ nα, nγ ≤ 2L, 0 ≤ nβ ≤ L}. Again
for a function f ∈ L2(SO(3)) with maximum spectral degree
Lf , the sampling of a function f on ELf ensures that all
information of the function is captured and also permits exact
quadrature (which follows from the results developed on the
sphere [35]).

III. DIRECTIONAL SLSHT

We describe in this section the directional SLSHT, which
is capable of revealing directional features of signals in the
spatio-spectral1 domain. For spatial localization, we consider

1When we refer to spatio-spectral, we consider the SO(3) spatial domain,
instead of S2. This is due to the reason that we are considering all possible
rotations, parameterized using Euler angles which form the SO(3) domain.

the band-limited azimuthally asymmetric window function
which is spatially concentrated in some asymmetric region
around the north pole. Since the rotation around the z-axis
does not have any affect on an azimuthally symmetric func-
tion, the localized spherical harmonic transform using an
azimuthally symmetric window function can be parameterized
on the sphere. However, if an azimuthally asymmetric window
is used to obtain localization in the spatial domain, the
rotation of the window function is fully parameterized with the
consideration of all three Euler angles (α, β, γ) ∈SO(3). We
refer to the spatially localized transform using an asymmetric
window as the directional SLSHT. Here, we first define the
directional SLSHT distribution which presents the signal in
the spatio-spectral domain. Later in this section, we present
the harmonic analysis of SLSHT distribution and provide an
inversion relation to obtain the signal from its given directional
SLSHT distribution.

A. Forward Directional SLSHT

Definition 1 (Directional SLSHT): For a signal
f ∈ L2(S2), define the directional SLSHT distribution
component g(ρ; `,m) ∈ L2(SO(3)) of degree ` and order
m as the spherical harmonic transform of a localized signal
where localization is provided by the rotation operator Dρ

acting on window function h ∈ L2(S2), i.e.,

g(ρ; `,m) ,
∫
S2
f(x̂)

(
Dρh

)
(x̂)Y m` (x̂) ds(x̂) (10)

for 0 ≤ ` ≤ Lg, |m| ≤ `, where Lg = Lf + Lh denotes the
maximum spherical harmonic degree for which the distribution
components g(ρ; `,m) are non-zero, and Lf and Lh denote
the band-limits of the signal f and the window function h,
respectively. Also, each distribution component g(ρ; `,m) is
band-limited in ρ = (α, β, γ) ∈ SO(3) with maximum degree
Lh, i.e., when expressed in terms of Wigner-D functions. We
elaborate on this shortly. Furthermore, we consider unit energy
normalized window functions such that 〈h, h〉 = 1.

Remark 1: The directional SLSHT distribution component
in (10) can be interpreted as the spherical harmonic transform
of the localized signal where the window function h provides
asymmetric localization at spatial position x̂ = x̂(β, α) ∈ S2
and the first rotation, through γ, determines the orientation
of the window function at x̂. If the window function is
azimuthally symmetric, this orientation of the window function
by γ becomes invariant and the SLSHT distribution compo-
nents are defined on L2(S2) [10].

Since the maximum spectral degree for which the SLSHT
distribution is defined is Lg = Lf +Lh, we consider the band-
limited window function such that Lh ≤ Lf to avoid extending
Lg significantly above Lf . We discuss the localization of the
window function in spatial and spectral domains later in the
paper.

B. Harmonic Analysis

We now present the formulation of the directional SLSHT
distribution if the signal f and the window function h are
represented in the spectral domain. Using the expression of
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the spherical harmonics of a rotated function in (5), we can
write the SLSHT distribution component g(ρ; `,m) in (10) as

g(ρ; `,m) =

Lf∑
`′=0

`′∑
m′=−`′

(
f
)m′

`′
(11)

×
Lh∑
p=0

p∑
q=−p

p∑
q′=−p

(
h
)q′
p
Dp
q,q′(ρ)T (`′,m′; p, q; `,m),

where

T (`′,m′; p, q; `,m) =

∫
S2
Y m

′

`′ (x̂)Y qp (x̂)Y m` (x̂) ds(x̂)

denotes the spherical harmonic triple product, which can
be evaluated using Wigner-3j symbols or Clebsch-Gordan
coefficients [36], [40].

Remark 2: By comparing g(ρ; `,m) in (11) with (8), we
note that the band-limit of g(ρ; `,m) in ρ is given by Lh. Since
`′ ≤ Lf and p ≤ Lh in (11), our statement that the distribution
component g(ρ; `,m) is non-zero for ` ≤ Lg = Lf + Lh
follows since the triple product T (`′,m′; p, q; `,m) is non-
zero for ` ≤ Lf + Lh only.

C. Inverse Directional SLSHT

Here, we define the inverse directional SLSHT to recon-
struct a signal from its SLSHT distribution. The original signal
can be reconstructed from its directional SLSHT distribution
through the spectral domain marginal, that is, by integrating
the SLSHT distribution components over the spatial domain
SO(3) [18]. Using our harmonic formulation in (11), define(
f̂
)m
`

as the integral of the SLSHT distribution component
g(ρ; `,m) over SO(3) giving(

f̂
)m
`

=

∫
SO(3)

g(ρ; `,m)dρ, 0 ≤ ` ≤ Lf

=

Lh∑
`′=0

`′∑
m′=−`′

(
f
)m′

`′

Lh∑
p=0

p∑
q=−p

p∑
q′=−p

(
h
)q′
p

× T (`′,m′; p, q; `,m)

∫
SO(3)

Dp
q,q′(ρ) dρ

=
√

16π3
(
h
)0
0

(
f
)m
`
, (12)

where we have used the orthogonality relation of Wigner-D
functions (see (7)). Using the expression in (12), we can find
the spherical harmonic coefficient

(
f
)m
`

of the signal f as

(
f
)m
`

=

(
f̂
)m
`√

16π3
(
h
)0
0

, (13)

which indicates that we only need to know the DC component
of the window function

(
h
)0
0

in order to obtain the signal
from its directional SLSHT distribution. It further imposes the
condition that the DC component of the window function must
be non-zero. Although the distribution components in (11) are
defined up to degree Lg = Lf + Lh, we only require the
components up to Lf for signal reconstruction.

Computing the forward and inverse directional SLSHT
is computationally demanding. Since the directional SLSHT
distribution components g(ρ; `,m) in (10) are defined for

` ≤ Lg , the number of distribution components are of the
order L2

g , while the sampling of ρ is of the order L3
h; thus,

the direct evaluation of the directional SLSHT distribution
is prohibitively computationally expensive. Therefore efficient
algorithms need to be developed which reduce the computa-
tional complexity. We address this problem in the next section.

IV. EFFICIENT COMPUTATION OF DIRECTIONAL SLSHT
DISTRIBUTION

Here, we present efficient algorithms for the computation
of the directional SLSHT distribution of a signal and the
signal reconstruction from its directional SLSHT distribution.
First, we discuss the computational complexities if the SLSHT
distribution components are computed using direct quadrature
as given in (10) or using the harmonic formulation in (11).
Later, we develop an alternative harmonic formulation which
reduces the computational burden. Finally, we present an effi-
cient algorithm that incorporates a factoring of rotations [41]
and exploits the FFT.

First we need to parameterize the required tessellation
schemes for S2 for the representation of the signal f and the
window h and for SO(3) which forms the spatial domain of the
directional SLSHT distribution. Since the maximum spectral
degree of the signal f is Lf , we therefore consider the equian-
gular tessellation SLf to represent f . Since the maximum
degree for all SLSHT distribution components g(ρ; `,m) in ρ
is Lh, we therefore consider the tessellation ELh to represent
the SLSHT distribution components on L2(SO(3)).

A. Direct Quadrature and Harmonic Formulation

We define the forward spatio-spectral transform as eval-
uation of each SLSHT distribution component g(ρ; `,m).
Evaluation of the forward spatio-spectral transform using
exact quadrature in (10) requires the computation of two
dimensional summation over the tessellation of S2 for each
3-tuple (α, β, γ). Since there are O(L3

h) such 3-tuples in the
tessellation scheme ELh and the SLSHT distribution compo-
nents are of the order O(L2

f ), the computational complexity to
compute all distribution components using direct quadrature
is O(L4

fL
3
h). Using the harmonic formulation in (11), the

complexity to compute each SLSHT distribution component is
O(L2

fL
6
h) and to compute all SLSHT distribution components

is O(L4
fL

6
h). Although the harmonic formulation in (11) is

useful to establish that the signal can be reconstructed from
the directional SLSHT distribution, it is much more com-
putationally demanding than direct quadrature. We develop
efficient algorithms in the next subsection which improve the
computational complexity of the harmonic formulation and
make it more efficient than direct quadrature.

For the inverse directional SLSHT distribution, we only
need to integrate over SO(3) to obtain the signal in the
spherical harmonic domain as proposed in (12). Since the
integral can be evaluated by a summation over all Euler angles
using quadrature weights, an efficient way to recover the signal
from its SLSHT distribution is through direct quadrature, with
complexity of O(L3

h) for each distribution component and
O(L2

fL
3
h) for all components.
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In order to evaluate the integral in (12) exactly, we need
to define quadrature weights along Euler angle β in the
tessellation ELh . We evaluate the integral in (12) by the
following summation2

(
f̂
)m
`

=
1

(2Lh + 1)3

2Lh∑
nα=0

Lh∑
nβ=0

2Lh∑
nγ=0

× g(αnα , βnβ , γnγ ; `,m) q(βnβ ), (14)

where the quadrature weights q(βnβ ) follow from [35], with

q(βnβ ) =


4π2
(
bLh2 c+ 1

2

)−1
, βnβ = 0

8π2
Lh∑

m=−Lh
w(−m) cosmβnβ , otherwise

(15)

where w(m) is defined as [35]

w(m) =


±iπ
2 , m = ±1,

0, m odd, m 6= 1,
2

1−m2 , m even.
(16)

B. Fast Algorithm for Forward Directional SLSHT

Here, we develop a fast algorithm to reduce the computa-
tional complexity of the forward SLSHT. We first consider an
alternative harmonic formulation of the forward SLSHT and
then employ the factoring of rotations approach which was first
proposed in [41] and has been used in the implementations of
the fast spherical convolution [42] and the directional spherical
wavelet transform [15].

We may write the directional SLSHT distribution compo-
nent g(ρ; `,m) in (10) as a spherical convolution [15] of h
and the spherical harmonic modulated signal f Y m` , giving

g(ρ; `,m) =

Lh∑
p=0

p∑
q=−p

p∑
q′=−p

(
fY m`

)q
p

(
h
)q′
p
Dp
q,q′(α, β, γ),

(17)

which can be expressed, using the definition of the Wigner-D
function in (6), as

g(ρ; `,m) =

Lh∑
p=0

p∑
q=−p

p∑
q′=−p

(
fY m`

)q
p

×
(
h
)q′
p
dpq,q′(β)e−iq

′γe−iqα. (18)

The band-limit of the spherical harmonic modulated signal
f Y m` is Lf + `. Since the maximum ` for which g is non-
zero is Lf +Lh, we must compute up to f Y mLf+Lh , which is
band-limited to 2Lf +Lh. However, we only need to compute
the spherical harmonic coefficients

(
fY m`

)q
p

of the modulated
signal up to degree p ≤ Lh. Therefore, the computation of the
spherical harmonic transform of f Y m` is an interesting sub-
problem. We show in Appendix A that the spherical harmonic

2In the evaluation of (14) we have computed the summation over 2Lh +1
sample points in both α and γ. This is due to the tessellation ELh required
to capture all information content of g(α, β, γ; `,m). However, if one were
considered in recovering f only, then given the quadrature rule in [35]

(
f̂
)m
`

in (14) could be computed exactly with only Lh +1 sample points in α and
γ.

coefficients
(
fY m`

)q
p

for 0 ≤ p ≤ Lh, |q| ≤ p of the signal
f Y m` can be computed in O(L3

fL
2
h) time for all ` and m.

By factoring the single rotation by (α, β, γ) into two rota-
tions [15], [41], [42]

Dρ = Dρ1 Dρ2 , ρ = (α, β, γ), ρ1 = (α− π/2,−π/2, β),

ρ2 = (0, π/2, γ + π/2), (19)

and noting the effect of rotation on spherical harmonic co-
efficients in (5), we can write the Wigner-D function in (6)
as

Dp
q,q′(α, β, γ) = iq−q

′
p∑

q′′=−p
∆p
q′′q ∆p

q′′q′ e
−iqα−iq′′β−iq′γ ,

(20)

where ∆p
qq′ = dpq,q′(π/2) and we have used the following

symmetry properties of Wigner-d functions [40]

dpq,q′(β) = (−1)q−q
′
dpq,q′(−β) = (−1)q−q

′
dp−q,−q′(β)

= (−1)q−q
′
dpq′,q(β) = dp−q′,−q(β). (21)

Using the Wigner-D expansion given in (20), we can write the
alternative harmonic formulation of the SLSHT distribution
component g(ρ; `,m) in (17) as

g(ρ; `,m) =

Lh∑
p=0

p∑
q=−p

p∑
q′=−p

(
fY m`

)q
p

(
h
)q′
p
iq−q

′

×
p∑

q′′=−p
∆p
q′′q ∆p

q′′q′ e
−iqα−iq′′β−q′γ , (22)

where ρ = (α, β, γ). By reordering the summations we can
write

g(ρ; `,m) =

Lh∑
q=−Lh

Lh∑
q′=−Lh

Lh∑
q′′=−Lh

Cq,q′,q′′(`,m)

× e−iqα−iq
′′β−q′γ , ρ = (α, β, γ), (23)

where

Cq,q′,q′′(`,m) = iq−q
′

Lh∑
p=max(|q|,|q′|,|q′′|)

∆p
q′′q ∆p

q′′q′

(
fY m`

)q
p

(
h
)q′
p
.

Comparatively, the computation of the SLSHT distribution
components using the expression given by (23) is not more
efficient than the initial expression (18). However, the presence
of complex exponentials can be exploited by employing FFTs
to evaluate the involved summations.

The objective of factoring the rotations is to carry out the
β rotation along the y-axis as a rotation along the z-axis.
The rotations along the z-axis are expressed using complex
exponentials and thus these rotations can be applied with
much less computational burden, by exploiting the power of
an FFT, relative to a rotation about the y-axis. All the three
rotations which characterize the spatial domain of the SLSHT
distribution components appear in complex exponentials in
(23) and thus we can use FFTs to evaluate the summation of
Cq,q′,q′′(`,m) over q, q′ and q′′. First we need to compute
Cq,q′,q′′(`,m) for each ` and for each m which requires
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the one-dimensional summation over three dimensional grid
formed by q, q′ and q′′ and thus can be computed in O(L4

h).
Using Cq,q′,q′′(`,m), the summation over the complex expo-
nentials in (23) can be carried out in O(L3

h log2 Lh) using
FFTs. The overall complexity of this approach is dominated
by the computation of Cq,q′,q′′(`,m), that is, O(L4

h) for
each SLSHT distribution component and O(L2

fL
4
h) for the

complete SLSHT distribution. We note that the evaluation
of Cq,q′,q′′(`,m) requires the computation of ∆p

qq′ which
can be evaluated over the (q, q′) plane for each p using the
recursion formula of [43] with a complexity of O(L2

h). Since
p is of the order Lh, the ∆ matrices can be evaluated in
O(L3

h), which does not change the overall complexity of our
proposed algorithm. The overall asymptotic complexity of our
fast algorithm is thus O(L3

fL
2
h + L2

fL
4
h).

Remark 3: In order to evaluate (18), we note that the
separation of variables approach [21] can be used as an
alternative to the factoring of rotation approach to develop a
fast algorithm. This is due to the factorized form of Wigner-D
function and the consideration of equiangular tessellation
scheme for SO(3), which keeps the independence between
the samples along different Euler angles. In terms of the
computational complexity, the separation of variable approach
has the same computational complexity as the factoring of
rotation approach. However, the separation of variable ap-
proach needs to compute Wigner-d functions for all values
of β but only requires a two dimensional FFT, whereas the
factoring of rotation approach only requires the evaluation of
Wigner-d function for π/2 but requires a three dimensional
FFT. Since both approaches have the same complexity, we
use the factoring of rotation in our implementation of the fast
algorithm.

Remark 4: If we want to analyze the signal f with multiple
window functions, then we do not need to recalculate the
spherical harmonic transform of the modulated signal f Y m` ,
which accounts for the O(L3

fL
2
h) factor in the overall com-

plexity. Once it is computed, the SLSHT distribution can be
computed in O(L2

fL
4
h) time for each window function of the

same band-limit using the proposed efficient implementation.
Our proposed formulation and efficient implementation can

be further optimized in the case of a steerable window func-
tion. Steerable functions have an azimuthal harmonic band-
limit in m that is less than the band-limit in ` (see [20], [21] for
further details about steerability on the sphere). In this case, the
L2
fL

4
h factor contributing to the overall asymptotic complexity

of the fast algorithm is reduced to L2
fL

3
h. Furthermore, we

may then compute the directional SLSHT for any continuous
γ ∈ [0, 2π) from a small number of basis orientations (due to
the linearity of the SLSHT).

If the signal and window function are real, the computa-
tional time can be further reduced by considering the conjugate
symmetry relation of the spherical harmonic coefficients. Fur-
thermore, in this setting, the SLSHT distribution components
also satisfy the conjugate symmetry property

g(ρ; `,−m) = (−1)m g(ρ; `,m) (24)

and we do not need to compute the SLSHT distribution
components of negative orders.

V. WINDOW LOCALIZATION IN SPATIAL AND SPECTRAL
DOMAINS

The directional SLSHT distribution is the spherical har-
monic transform of the product of two functions, the signal
f and the rotated window function h and we must be careful
in interpreting the directional SLSHT distribution in the sense
that we do not mistake using the signal to study the window
because there is no distinction mathematically. The window
function should be chosen such that it provides spatial local-
ization in some spatial region around the north pole (origin).
Since we have considered a band-limited window function, the
window function cannot be perfectly localized in the spatial
domain due to the uncertainty principle on the sphere [44].
However, it can be optimally localized by maximizing the
energy concentration of the window function in the desired
directional region [2].

The interpretation and the effectiveness of the directional
SLSHT distribution depends on the chosen window function.
The window function with maximum localization in some
defined asymmetric region provides directional localization
and thus reveals directional features in the spatio-spectral
domain. The more directional the window function, the more
directional features it can reveal in the spatio-spectral domain
but this tends to increase the maximum spherical harmonic
degree Lh. Recall that the maximum degree of the directional
SLSHT distribution components is given by Lg = Lf + Lh.
Thus, when the signal is expressed in the spatio-spectral
domain its spectral domain is extended by Lh, which results in
spectral leakage. Therefore, we want the window function to
be simultaneously maximally localized in some spatial region
R ⊂ S2 and have the minimum possible band-limit which
achieves the desired level of energy concentration in the spatial
region R.

Here, we propose using a band-limited eigenfunction ob-
tained from the solution of the Slepian concentration prob-
lem [2] as a window function, concentrated in a spatially
localized elliptical region around the north pole. We first
parameterize the elliptical region and later analyze the re-
sulting eigenfunctions from the perspective of the uncertainty
principle on the sphere [44]. We note that the choice of the
asymmetric region as an elliptical region is only one possibility
and the analysis can be extended to other asymmetric regions
such as strip regions around the north pole [45].

A. Parametrization of Window Function

We consider a band-limited window function of maximum
spherical harmonic degree Lh, which is spatially concentrated
in the elliptical region on the sphere with major axis along the
x-axis, and thus is orientated along the x-axis. The elliptical
region can be parameterized using the focus colatitude θc of
the ellipse along the positive x-axis and the arc length a of
the semi-major axis:

R(θc,a) ,
{

(θ, φ) : 4s
(
(θ, φ), (θc, 0)

)
+4s

(
(θ, φ), (θc, π)

)
≤ 2a

}
, (25)

where 0 ≤ θc ≤ a ≤ π/2. Here 4s
(
(θ, φ), (θ′, φ′)

)
=

arccos
(

sin θ sin θ′ cos(φ − φ′) + cos θ cos θ′
)

denotes the



7

(a) (b) (c)
Fig. 1: Band-limited eigenfunction windows h on the sphere with 90% spatial concentration in an elliptical region R(θc,a) of
focus θc = π/6 and major axis: (a) a = π/6 + π/80, (b) a = π/6 + π/120 and (c) a = π/6 + π/240.
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λ m
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a = π/6 +  π/80
a = π/6 +  π/120
a = π/6 +  π/240

Fig. 2: The maximum eigenvalue λmax of the eigenfunction h
with spherical harmonic band-limit L for spatial concentration
in an elliptical region of focus θc = π/6 and major axis a as
indicated. Black vertical lines indicate the bound on the band-
limit Bh given by (26) and the gray vertical lines indicate the
actual Lh which ensures 90% concentration in an elliptical
region.

angular distance between two points (θ, φ) and (θ′, φ′) on the
sphere.

Remark 5: For a given focus θc, the region becomes more
directional as the arc length a approaches θc from π/2. For
a = π/2, the region becomes azimuthally symmetric, i.e.,
we recover the polar cap of central angle π/2. Also, when
θc = 0, the region becomes azimuthally symmetric (polar cap)
of central angle a.

B. Slepian Concentration Problem

As a result of the Slepian concentration problem [2], [45]
to find the band-limited function with bandwidth Lh and
maximal spatial concentration in an elliptical region R(θc,a),
we obtain (Lh + 1)2 eigenfunctions. Due to the symmetry
of the elliptical region about x-y plane, the eigenfunctions
are real valued [45]. The eigenvalue associated with each

eigenfunction serves as a measure of the energy concentration
in the spatial region. Here we consider the use of the band-
limited eigenfunction with maximum energy concentration in
the elliptical region for given band-limit Lh and refer to
such an eigenfunction as the eigenfunction window. If A
denotes the area of the elliptical region, it is shown [2],
[45] that most of the eigenvalues lie either near zero or
unity for both symmetric and asymmetric regions and the
sum of all eigenvalues, referred as an equivalent of the
Shannon number [2], is equal to N0 = A(Lh + 1)2/(4π).
Also, it is shown empirically in [32] that there exist less
than or equal to N0 − 1 spatially concentrated eigenfunctions
with non-insignificant energy concentration. By noting these
developments and empirical results, and considering that Lh
must be chosen that we obtain at least one eigenfunction which
is spatially concentrated in the elliptical region, we recover the
following empirical lower bound for Lh:

Lh & Bh = 2

⌈√
2π

A

⌉
− 1, A =

∫
R(θc,a)

ds(x̂), (26)

where d (·) e denotes the integer ceiling function (this bound
follows directly from N0 & 2). We analyze this bound later
in this section.

Let λmax denote the eigenvalue associated with the most
spatially concentrated eigenfunction. By finding the minimum
value of Lh which ensures that λmax is greater than or
equal to the desired energy concentration, an eigenfunction
window h(x̂) with desired energy concentration in the el-
liptical region and minimum possible band-limit Lh can be
obtained. Thus, the focus of an elliptical region θc, arc length
of semi-major axis a and maximum spectral degree Lh fully
parameterize the eigenfunction window. As an illustration, the
three eigenfunction windows having 90% spatial concentration
in the elliptical regions R(θc,a) with focus θc = π/6 and
a ∈ {π/6+π/240, π/6+π/120, π/6+π/80} and respective
maximum spherical harmonic degree Lh ∈ {18, 14, 11} are
shown in Fig. 1. For these elliptical regions, in Fig. 2 we show
λmax versus spherical harmonic band-limit L denoting the
band-limit of the most concentrated eigenfunction window,
where we note the difference in Lh and the bound Bh for
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Fig. 3: Auto-correlation function Ch(ς) as described in (27)
for eigenfunction windows h with spatial concentration in
an elliptical region of focus θc = π/6 and major axis a as
indicated.

the desired concentration level. For 90% desired concentration
level, we observe that the spherical harmonic degree Lh which
ensures λmax ≥ 0.9 deviates further from the bound Bh given
by (26) as the concentration region becomes more directional
(as expected since the bound does not incorporate the level of
directionality of the region).

C. Analysis of Eigenfunction Window Concentrated in Ellip-
tical Region

1) Directionality: For the use of the eigenfunction window
in obtaining the directional SLSHT distribution, the direction-
ality of the eigenfunction window must be a key criterion in
selecting the eigenfunction window for the identification of
localized features of a signal in the spatio-spectral domain.
We use the definition of the auto-correlation function on the
sphere as a measure of the directionality of the eigenfunction
window [20], [22]. The auto-correlation function is defined as
the inner product of eigenfunction window with its version
rotated around the z-axis:

Ch(ς) = 〈Dρ1h, h〉 , ρ1 = (0, 0, ς), ς ∈ [0,
π

2
], (27)

which can be expressed in the harmonic domain as

Ch(ς) =

Lh∑
`=0

∑̀
m=−`

eimς |hm` |2. (28)

Due to the symmetry of the elliptical region and the eigenfunc-
tion window about the major axis (x-axis) and minor axis (y-
axis), we have considered ς in the range of 0 to π/2.

For the eigenfunction windows presented in the previous
subsection, the auto-correlation function for each window is
shown in Fig. 3, which indicates that Ch(ς) decays more
rapidly from unity at ς = 0 for more directional window and
therefore, the peakedness of Ch(ς) quantifies the ability of the
window function to reveal the localized directional features of
a signal in the spatio-spectral domain.
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Fig. 4: Spatial variance (20σ2
S), spectral variance (σ2

L) and
uncertainty product, as described in (29), (30) and (31), are
shown for eigenfunctions with spatial concentration in an
elliptical region of focus θc = π/6 and major axis a as
indicated.

2) Spatial and Spectral Localization: Here we study the
spatial and spectral localization of eigenfunction windows
from the perspective of the uncertainty principle on the
sphere [44], [46], according to which, the function cannot
be simultaneously localized in both the spatial and spectral
domains. The following inequality specifies the uncertainty
principle for unit energy functions defined on the sphere,
which relates the trade-off between the spatial and spectral
localization of a function:

σS√
1− σ2

S

· σL ≥ 1, (29)

where σS and σL denote the variance of the band-limited
unit energy eigenfunction window in the spatial domain and
spectral domain respectively and are defined as [46]

σ2
S = 1−

(
1

2

∫
S2

sin(2θ)
∣∣h(θ, φ)

∣∣2 dθdφ)2

(30)

and

σ2
L =

Lh∑
`=0

`(`+ 1)
∑̀
m=−`

|hm` |2. (31)

Due to the consideration of unit energy functions, 0 ≤ σS ≤ 1.
We note that smaller variance indicates better localization of
the window function. The variance in the spatial and spec-
tral domains and the uncertainty product for eigenfunctions
concentrated in an elliptical region of focus π/6 and major-
axis of different values are shown in Fig. 4. As expected,
the variance in the spatial domain decreases as the region
becomes more directional, whereas the variance in the spectral
domain increases because Lh increases. We also note that
the uncertainty product increases as the region becomes more
directional.
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Fig. 5: Numerical validation and computation time of the proposed algorithms. The computation time in seconds: (a) τ1 (b)
τ2 and (c) τ3. For fixed Lh, τ1 evolves as O(L3

f ) and both τ2 and τ3 scale as O(L2
f ) as shown by the solid red lines (without

markers). (d) The maximum error ε, which empirically appears to scale as O(L), as shown by the solid red line.

VI. RESULTS

In this section, we first demonstrate the numerical valida-
tion and computation time of our algorithms to evaluate the
directional SLSHT components. Later, we provide an example
to illustrate the capability of the directional SLSHT, showing
that it reveals the directional features of signals in the spatio-
spectral domain. The implementation of the our algorithms is
carried out in MATLAB, using the MATLAB interface of the
SSHT3 package (the core algorithms of which are written
in C and which also uses the FFTW4 package to compute
Fourier transforms) to efficiently compute forward and inverse
spherical harmonic transforms [35].

A. Numerical Validation and Computation Time

In order to evaluate the numerical accuracy and the compu-
tation time, we carry out the following numerical experiment.

3http://www.jasonmcewen.org/
4http://www.fftw.org/

We use the band-limited function h for spatial localization
with band-limit Lh = 18 and spatial localization in the region
R(π/6,π/6+π/240). We generate band-limited test signals with
band-limits 18 ≤ Lf ≤ 130 by generating spherical harmonic
coefficients with real and imaginary parts uniformly distributed
in the interval [0, 1].

For the given test signal, we measure the computation time
τ1 to evaluate spherical harmonic transform of the modulated
signal, i.e., (fY m` )qp for p ≤ Lh, q ≤ |p| and for all
` ≤ Lf + Lh, m ≤ |`|, using the method presented in
Appendix A. Given the spherical harmonic transform of the
modulated signal, we then measure the computation time τ2
to compute all directional SLSHT distribution components
g(ρ; `,m) for ` ≤ Lf + Lh and m ≤ |`| using our fast
algorithm presented in Section IV-B, where we compute the
Wigner-d functions on-the-fly for the argument π/2 by using
the recursion of Trapani [43]. We also record the computation
time τ3 to recover a signal from its SLSHT distribution
components. All numerical experiments are performed using

http://www.jasonmcewen.org/
http://www.fftw.org/
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Fig. 6: Mars signal in the spatial domain. The grand canyon
Valles Marineris and the mountainous regions of Tharsis
Montes and Olympus Montes are indicated.

MATLAB running on a 2.4 GHz Intel Xeon processor with
64 GB of RAM and the results are averaged over ten test
signals. The computation time τ1 and τ2 are plotted against the
band-limit Lf of the test signal in Fig. 5a and Fig. 5b, which
respectively evolve as O(L3

f ) and O(L2
f ) for fixed Lh and

thus corroborate the theoretical complexity. The computation
time τ3 for the inverse directional SLSHT is plotted in Fig. 5c,
which scales as O(L2

f ) for fixed Lh, again supporting the
theoretical complexity.

We reconstruct the original signal from its SLSHT distri-
bution components using (14) and (12), in order to assess the
numerical accuracy of our algorithms by measuring the max-
imum absolute error between the original spherical harmonic
coefficients of the test signal and the reconstructed values.
The maximum absolute error is plotted in Fig. 5d for different
band-limits Lf , which illustrates that our algorithms achieve
very good numerical accuracy with numerical errors at the
level of floating point precision.

B. Directional SLSHT Illustration

In order to illustrate the capability of the proposed transform
to reveal the localized contribution of spectral contents and
probe the directional features in the spatio-spectral domain,
we analyze the Mars topographic map (height above geoid)
as a signal on the sphere, which is obtained by using the
spherical harmonic model of the topography of Mars5. The
Mars topographic map is shown in Fig. 6 in the spatial domain,
where the grand canyon Valles Marineris and the mountainous
regions of Tharsis Montes and Olympus Montes are shown,
leading to the high frequency contents. We note that the
mountainous regions are non-directional features of the Mars
map, whereas the grand canyon serves as a directional feature
with direction orientated along a line of approximate constant

5http://www.ipgp.fr/∼wieczor/SH/

(a)

(b)

Fig. 7: Magnitude of the components of the directional SLSHT
distribution of the Mars signal obtained using the eigenfunc-
tion window concentrated in an elliptical region of focus
θc = π/12 and major axis a = 7π/12. For fixed orientation
γ, the distribution components g(ρ; `,m) are mapped on the
sphere using ρ = (φ, θ, γ) for order m = 15 and degree
20 ≤ ` ≤ 25. The components are shown for orientation (a)
γ = 0 and (b) γ ≈ π/2 of the window function around the
z-axis. Top left: g(ρ; 20, 15), top right: g(ρ; 22, 15).

latitude. The spherical harmonic coefficients provide details
about the presence of higher degree spherical harmonics in the
signal, but do not reveal any information about the localized
contribution of higher degree spherical harmonics.

If we analyze the signal by employing the SLSHT using
an azimuthally symmetric window function, the presence of
localized contributions of higher degree spectral contents can
be determined in the spatio-spectral domain [10], however,
the presence of directional features cannot be extracted. Here,
we illustrate that the use of the directional SLSHT enables
the identification of directional features in the spatio-spectral
domain, which is due to the consideration of an asymmetric
window function for spatial localization.

We obtain the directional SLSHT distribution components
g(ρ; `,m) of the Mars map f using the band-limited eigen-
function window h with Lh = 60 and 90% concentration in

http://www.ipgp.fr/~wieczor/SH/
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the spatial domain in an elliptical region R(π/12,7π/12). The
magnitude of the SLSHT distribution components g(ρ; `,m)
for order m = 15 and degrees 20 ≤ ` ≤ 25 and 50 ≤ ` ≤ 55
are shown in Fig. 7 and Fig. 8 respectively, where the com-
ponents in the panels are for Euler angle (a) γ = 0 and (b)
γ = 100π/201 ≈ π/2. Since the elliptical region is oriented
along the x-axis, the window with orientation γ = 0 provides
localization along colatitude and the window with orientation
γ ≈ π/2 provides localization along longitude. It is evident
that using orientation of the window γ ≈ π/2 probes the infor-
mation about the grand canyon Valles Marineris (directional
feature) along longitude in the spatio-spectral domain. The
localized contribution of higher degree spherical harmonics
towards the mountainous region can also be observed in Fig. 7
for degree 20 ≤ ` ≤ 25 and both γ = 0 and γ = π/2.
However, there is not significant contribution of spherical
harmonics of degree 50 ≤ ` ≤ 55 towards mountainous region
as indicated in Fig. 8a where γ = 0, but the localization of
the directional features along the orientation γ ≈ π/2 are
revealed in the spatio-spectral domain as shown in Fig. 8b.
Due to the ability of the directional SLSHT to reveal the
localized contribution of spectral contents and the directional
or oriented features in the spatio-spectral domain, it can be
useful in many applications where the signal on the sphere is
localized in position and orientation.

VII. CONCLUSIONS

We have presented the directional SLSHT to project a
signal on the sphere onto its joint spatio-spectral domain as
a directional SLSHT distribution. In spirit, the directional
SLSHT is composed of SO(3) spatial localization followed by
the spherical harmonic transform. Here, we have proposed the
use of an azimuthally asymmetric window function to obtain
spatial localization, which enables the transform to resolve
directional features in the spatio-spectral domain. We have
also presented an inversion relation to synthesize the original
signal from its directional SLSHT distribution. Since data-sets
on the sphere are of considerable size, we have developed a
fast algorithm for the efficient computation of the directional
SLSHT distribution of a signal. The computational complexity
of computing the directional SLSHT is reduced by providing
an alternative harmonic formulation of the transform and then
exploiting the factoring of rotation approach [41] and the
fast Fourier transform. The computational complexity of the
proposed fast algorithm to evaluate SLSHT distribution of a
signal with band-limit Lf using window function with band-
limit Lh is O(L3

fL
2
h+L2

fL
4
h) as compared to the complexity of

direct evaluation, which is O(L4
fL

3
h). The numerical accuracy

and the speed of our fast algorithm has also been studied. The
directional SLSHT distribution relies on a window function for
spatial localization; we have analyzed the band-limited win-
dow function obtained from the Slepian concentration problem
on the sphere, with nominal concentration in an elliptical
region around the north pole. We provided an illustration
which highlighted the capability of the directional SLSHT to
reveal directional features in the spatio-spectral domain, which
is likely to be of use in many applications.

(a)

(b)

Fig. 8: Magnitude of the components of the directional SLSHT
distribution of the Mars signal obtained using the eigenfunc-
tion window concentrated in an elliptical region of focus
θc = π/12 and major axis a = 7π/12. For fixed orientation
γ, the distribution components g(ρ; `,m) are mapped on the
sphere using ρ = (φ, θ, γ) for order m = 15 and degree
50 ≤ ` ≤ 55. The components are shown for orientation (a)
γ = 0 and (b) γ ≈ π/2 of the window function around z-axis.
Top left: g(ρ; 50, 15), top right: g(ρ; 52, 15).

APPENDIX A
SPHERICAL HARMONIC TRANSFORM OF MODULATED

SIGNAL

Our objective is to compute the spherical harmonic trans-
form of the modulated signal fY m` , up to degree Lh, for all
` and m. In order to serve the purpose, we use a separation
variable technique given by(

f Y m`
)q
p

= Nm
` N

q
p

∫ π

0

Pm` (cos θ)P qp (cos θ)

×
∫ 2π

0

f(θ, φ)ei(m−q)φdφ︸ ︷︷ ︸
I(θ,m−q)

sin θdθ. (32)

Since 0 ≤ ` ≤ Lf + Lh and 0 ≤ p ≤ Lh, we need to
consider the signal f Y m` sampled on the grid S2Lf+2Lh for
the explicit evaluation of exact quadrature (note that sampling
in φ could be optimized given |m− q| ≤ Lf + 2Lh but this
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would require a different tessellation of the sphere and will not
alter the overall complexity of the computation). Using (32),
the integral over φ, giving I(θ,m−q), can be computed first in
O(L2

f log2 Lf ) for all m−q. Once I(θ,m−q) is computed, the
exact quadrature weights that follow from [35] can be used to
evaluate the integral over θ in O(Lf ) for each p, q, `, m and
in O(L3

fL
2
h) for all p, q, `, m. Thus the overall complexity to

compute the spherical harmonic transform of the modulated
signal f Y m` up to degree Lh is O(L3

fL
2
h).
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