7 research outputs found
Therapeutic impacts of microRNAs in breast cancer by their roles in regulating processes involved in this disease
Breast cancer is the most common cancer in women around the world. So far, many attempts have been made to treat this disease, but few effective treatments have been discovered. In this work, we reviewed the related articles in the limited period of time, 2000�2016, through search in PubMed, Scopus database, Google Scholar, and psychology and psychiatry literature (PsycINFO). We selected the articles about the correlation of microRNAs (miRNAs) and breast cancer in the insight into therapeutic applicability from mentioned genetics research databases. The miRNAs as an effective therapy for breast cancer was at the center of our attention. Hormone therapy and chemotherapy are two major methods that are being used frequently in breast cancer treatment. In the search for an effective therapy for breast cancer, miRNAs suggest a promising method of treatment. miRNAs are small, noncoding RNAs that can turn genes on or off and can have critical roles in cancer treatment; therefore, in the near future, usage of these biological molecules in breast cancer treatment can be considered a weapon against most common cancer-related concerns in women. Here, we discuss miRNAs and their roles in various aspects of breast cancer treatment to help find an alternative and effective way to treat or even cure this preventable disease. © 2017 Journal of Research in Medical Sciences
The importance of BRCA1 and BRCA2 genes mutations in breast cancer development
Many factors including genetic, environmental, and acquired are involved in breast cancer development across various societies. Among all of these factors in families with a history of breast cancer throughout several generations, genetics, like predisposing genes to develop this disease, should be considered more. Early detection of mutation carriers in these genes, in turn, can play an important role in its prevention. Because this disease has a high prevalence in half of the global population, female screening of reported mutations in predisposing genes, which have been seen in breast cancer patients, seems necessary. In this review, a number of mutations in two predisposing genes (BRCA1 and BRCA2) that occurred in patients with a family history was investigated. We studied published articles about mutations in genes predisposed to breast cancer between 2000 and 2015. We then summarized and classified reported mutations in these two genes to recommend some exons which have a high potential to mutate. According to previous studies, exons have been reported as most mutated exons presented in this article. Considering the large size and high cost of screening all exons in these two genes in patients with a family history, especially in developing countries, the results of this review article can be beneficial and helpful in the selection of exon to screen for patients with this disease
Exploring Kawasaki disease-specific hub genes revealing a striking similarity of expression profile to bacterial infections using weighted gene co-expression network analysis (WGCNA) and co-expression modules identification tool (CEMiTool): An integrated bioinformatics and experimental study
Kawasaki disease (KD) has been declared a rare idiopathic condition for a long time. The children age less than five years, as the most susceptible group, are at risk of this disease. Since the cause of the disease is unknown, this study was designed to investigate the cause of KD. We applied metaDE and WGCNA packages in order to perform a meta-analysis and identify network modules of co-expressed genes, respectively, on three expression array datasets and also CEMiTool package to confirm detected modules by WGCNA. Using the Pearson correlation coefficient, the resemblance of KD to other symptomatic-similar diseases, including bacterial infections, viral infections, JIA (juvenile idiopathic arthritis), HSP (Henoch-Schönlein purpura), GAS (group A streptococcal), and HAdV (adenovirus) was accurately estimated. In addition to validation by more three expression array datasets, serum samples of 16 patients and eight control participants have undergone the Real-Time PCR assay so as to evaluate produced bioinformatic results. WGCNA showed 3840 differentially expressed genes (DEGs) in KD in comparison with other diseases accompanying resembling clinical manifestations. Through further bioinformatic analysis and validation, 42 out of DEGs were introduced as hub genes, which the results of Real-Time PCR assay subsequently attested to the majority of them. The DEGs possessed a remarkable commonality with those of bacterial conditions. According to our exhaustive results, the origin of KD has been revealed pertinent to bacterial infections. Another interesting finding in this study is introducing IVIG in combination with particular antibiotics as a novel therapeutic approach, which supported by a score of authentic research studies to overcome KD. © 2020 Elsevier Gmb