862 research outputs found

    Proof of a universal lower bound on the shear viscosity to entropy density ratio

    Get PDF
    It has been conjectured, on the basis of the gauge-gravity duality, that the ratio of the shear viscosity to the entropy density should be universally bounded from below by 1/ 4 pi in units of the Planck constant divided by the Boltzmann constant. Here, we prove the bound for any ghost-free extension of Einstein gravity and the field-theory dual thereof. Our proof is based on the fact that, for such an extension, any gravitational coupling can only increase from its Einstein value. Therefore, since the shear viscosity is a particular gravitational coupling, it is minimal for Einstein gravity. Meanwhile, we show that the entropy density can always be calibrated to its Einstein value. Our general principles are demonstrated for a pair of specific models, one with ghosts and one without.Comment: 14 page

    The sound damping constant for generalized theories of gravity

    Full text link
    The near-horizon metric for a black brane in Anti-de Sitter (AdS) space and the metric near the AdS boundary both exhibit hydrodynamic behavior. We demonstrate the equivalence of this pair of hydrodynamic systems for the sound mode of a conformal theory. This is first established for Einstein's gravity, but we then show how the sound damping constant will be modified, from its Einstein form, for a generalized theory. The modified damping constant is expressible as the ratio of a pair of gravitational couplings that are indicative of the sound-channel class of gravitons. This ratio of couplings differs from both that of the shear diffusion coefficient and the shear viscosity to entropy ratio. Our analysis is mostly limited to conformal theories but suggestions are made as to how this restriction might eventually be lifted.Comment: 24 page
    • …
    corecore