320 research outputs found

    Nonequilibrium thermoelectric transport through vibrating molecular quantum dots

    Full text link
    We employ the functional renormalization group to study the effects of phonon-assisted tunneling on the nonequilibrium steady-state transport through a single level molecular quantum dot coupled to electronic leads. Within the framework of the spinless Anderson-Holstein model, we focus on small to intermediate electron-phonon couplings, and we explore the evolution from the adiabatic to the antiadiabatic limit and also from the low-temperature non-perturbative regime to the high temperature perturbative one. We identify the phononic signatures in the bias-voltage dependence of the electrical current and the differential conductance. Considering a temperature gradient between the electronic leads, we further investigate the interplay between the transport of charge and heat. Within the linear response regime, we compare the temperature dependence of various thermoelectric coefficients to our earlier results obtained within the numerical renormalization group [Phys.~Rev.~B {\bf 96}, 195156 (2017)]. Beyond the linear response regime, in the context of thermoelectric generators, we discuss the influence of molecular vibrations on the output power and the efficiency. We find that the molecular energy dissipation, which is inevitable in the presence of phonons, is significantly suppressed in the antiadiabatic limit resulting in the enhancement of the thermoelectric efficiency.Comment: 11 pages, 7 figures, Published versio

    Influence of phonon-assisted tunneling on the linear thermoelectric transport through molecular quantum dots

    Full text link
    We investigate the effect of vibrational degrees of freedom on the linear thermoelectric transport through a single-level quantum dot described by the spinless Anderson-Holstein impurity model. To study the effects of strong electron-phonon coupling, we use the nonperturbative numerical renormalization group approach. We also compare our results, at weak to intermediate coupling, with those obtained by employing the functional renormalization group method, finding good agreement in this parameter regime. When applying a gate voltage at finite temperatures, the inelastic scattering processes, induced by phonon-assisted tunneling, result in an interesting interplay between electrical and thermal transport. We explore different parameter regimes and identify situations for which the thermoelectric power as well as the dimensionless figure of merit are significantly enhanced via a Mahan-Sofo type of mechanism. We show, in particular, that this occurs at strong electron-phonon coupling and in the antiadiabatic regime.Comment: 14 pages, 8 figures, Published versio

    Exponential and power-law renormalization in phonon-assisted tunneling

    Full text link
    We investigate the spinless Anderson-Holstein model routinely employed to describe the basic physics of phonon-assisted tunneling in molecular devices. Our focus is on small to intermediate electron-phonon coupling; we complement a recent strong coupling study [Phys.~Rev.~B {87}, 075319 (2013)]. The entire crossover from the antiadiabatic regime to the adiabatic one is considered. Our analysis using the essentially analytical functional renormalization group approach backed-up by numerical renormalization group calculations goes beyond lowest order perturbation theory in the electron-phonon coupling. In particular, we provide an analytic expression for the effective tunneling coupling at particle-hole symmetry valid for all ratios of the bare tunnel coupling and the phonon frequency. It contains the exponential polaronic as well as the power-law renormalization; the latter can be traced back to x-ray edge-like physics. In the antiadiabatic and the adiabatic limit this expression agrees with the known ones obtained by mapping to an effective interacting resonant level model and lowest order perturbation theory, respectively. Away from particle-hole symmetry, we discuss and compare results from several approaches for the zero temperature electrical conductance of the model.Comment: 11 pages, 6 figures, Published versio

    Relaxation dynamics of an exactly solvable electron-phonon model

    Full text link
    We address the question whether observables of an exactly solvable model of electrons coupled to (optical) phonons relax into large time stationary state values and investigate if the asymptotic expectation values can be computed using a stationary density matrix. Two initial nonequilibrium situations are considered. A sudden quench of the electron-phonon coupling, starting from the noninteracting canonical equilibrium at temperature T in the electron as well as in the phonon subsystems, leads to a rather simple dynamics. A richer time evolution emerges if the initial state is taken as the product of the phonon vacuum and the filled Fermi sea supplemented by a highly excited additional electron. Our model has a natural set of constants of motion, with as many elements as degrees of freedom. In accordance with earlier studies of such type of models we find that expectation values which become stationary can be described by the density matrix of a generalized Gibbs ensemble which differs from that of a canonical ensemble. For the model at hand it appears to be evident that the eigenmode occupancy operators should be used in the construction of the stationary density matrix.Comment: 15 pages, 11 figures, published versio

    Functional renormalization group study of the Anderson--Holstein model

    Full text link
    We present a comprehensive study of the spectral and transport properties in the Anderson--Holstein model both in and out of equilibrium using the functional renormalization group (FRG). We show how the previously established machinery of Matsubara and Keldysh FRG can be extended to include the local phonon mode. Based on the analysis of spectral properties in equilibrium we identify different regimes depending on the strength of the electron--phonon interaction and the frequency of the phonon mode. We supplement these considerations with analytical results from the Kondo model. We also calculate the non-linear differential conductance through the Anderson--Holstein quantum dot and find clear signatures of the presence of the phonon mode.Comment: 19 pages, 8 figure

    A junction of three quantum wires: restoring time-reversal symmetry by interaction

    Full text link
    We investigate transport of correlated fermions through a junction of three one-dimensional quantum wires pierced by a magnetic flux. We determine the flow of the conductance as a function of a low-energy cutoff in the entire parameter space. For attractive interactions and generic flux the fixed point with maximal asymmetry of the conductance is the stable one, as conjectured recently. For repulsive interactions and arbitrary flux we find a line of stable fixed points with vanishing conductance as well as stable fixed points with symmetric conductance (4/9)(e^2/h).Comment: 5 pages, 3 figures, version accepted for publication in Phys. Rev. Let

    Nonuniversal spectral properties of the Luttinger model

    Full text link
    The one electron spectral functions for the Luttinger model are discussed for large but finite systems. The methods presented allow a simple interpretation of the results. For finite range interactions interesting nonunivesal spectral features emerge for momenta which differ from the Fermi points by the order of the inverse interaction range or more. For a simplified model with interactions only within the branches of right and left moving electrons analytical expressions for the spectral function are presented which allows to perform the thermodynamic limit. As in the general spinless model and the model including spin for which we present mainly numerical results the spectral functions do not approach the noninteracting limit for large momenta. The implication of our results for recent high resolution photoemission measurements on quasi one-dimensional conductors are discussed.Comment: 19 pages, Revtex 2.0, 5 ps-figures, to be mailed on reques

    Manipulating the magnetic state of a carbon nanotube Josephson junction using the superconducting phase

    Full text link
    The magnetic state of a quantum dot attached to superconducting leads is experimentally shown to be controlled by the superconducting phase difference across the dot. This is done by probing the relation between the Josephson current and the superconducting phase difference of a carbon nanotube junction whose Kondo energy and superconducting gap are of comparable size. It exhibits distinctively anharmonic behavior, revealing a phase mediated singlet to doublet transition. We obtain an excellent quantitative agreement with numerically exact quantum Monte Carlo calculations. This provides strong support that we indeed observed the finite temperature signatures of the phase controlled zero temperature level-crossing transition originating from strong local electronic correlations.Comment: 5 pages, 4 figures + supp. material
    • …
    corecore