229 research outputs found

    The eigenpairs of a Sylvester-Kac type matrix associated with a simple model for one-dimensional deposition and evaporation

    Full text link
    A straightforward model for deposition and evaporation on discrete cells of a finite array of any dimension leads to a matrix equation involving a Sylvester-Kac type matrix. The eigenvalues and eigenvectors of the general matrix are determined for an arbitrary number of cells. A variety of models to which this solution may be applied are discussed.Comment: 7 pages, no figure

    Polarization switching and induced birefringence in InGaAsP multiple quantum wells at 1.5 mu m

    Get PDF
    We analyze the 1.5mum wavelength operation of a room temperature polarization switch based on electron spin dynamics in InGaAsP multiple quantum wells. An unexpected difference in response for left and right circularly polarized pump light in pump-probe measurements was discovered and determined to be caused by an excess carrier induced birefringence. Transient polarization rotation and ellipticity were measured as a function of time delay. (C) 2002 American Institute of Physics.</p

    Spatial dependence of gain nonlinearities in InGaAs semiconductor optical amplifier

    Get PDF
    Counter-propagating sub-picosecond pulses are used to monitor gain saturation along the waveguide of an InGaAs superlattice semiconductor optical amplifier at 1550 nm wavelength. The functional form of the spatial dependence of gain saturation is found to depend on pulse energy. These observations are interpreted by combining the optical nonlinearities associated with interband carrier dynamics and carrier heating together and their respective time constants. We show that the results are consistent with the predictions of a propagation model. Implications for all-optical switching, particularly in the limit of full saturation across the whole amplifier, are discussed. (c) 2005 American Institute of Physics.</p

    Exploiting lens aberrations to create electron vortex beams

    Full text link
    A model for a new electron vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees of freedom are accessible by using the corrector lenses of a transmission electron microscope. The vortex beam is produced through a particular alignment of these lenses into a specifically designed astigmatic state and applying an annular aperture in the condensor plane. Experimental results are found to be in good agreement with simulations.Comment: 5 pages, 4 figure

    Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media

    Full text link
    We demonstrate the existence of stable three-dimensional spatiotemporal solitons (STSs) in media with a nonlocal cubic nonlinearity. Fundamental (nonspinning) STSs forming one-parameter families are stable if their propagation constant exceeds a certain critical value, that is inversely proportional to the range of nonlocality of nonlinear response. All spinning three-dimensional STSs are found to be unstable.Comment: 14 pages, 6 figures, accepted to PRE, Rapid Communication

    Stable three-dimensional spinning optical solitons supported by competing quadratic and cubic nonlinearities

    Full text link
    We show that the quadratic interaction of fundamental and second harmonics in a bulk dispersive medium, combined with self-defocusing cubic nonlinearity, give rise to completely localized spatiotemporal solitons (vortex tori) with vorticity s=1. There is no threshold necessary for the existence of these solitons. They are found to be stable against small perturbations if their energy exceeds a certain critical value, so that the stability domain occupies about 10% of the existence region of the solitons. We also demonstrate that the s=1 solitons are stable against very strong perturbations initially added to them. However, on the contrary to spatial vortex solitons in the same model, the spatiotemporal solitons with s=2 are never stable.Comment: latex text, 10 ps and 2 jpg figures; Physical Review E, in pres

    Green-function Method for Nonlinear Interactions of Elastic Waves

    Get PDF
    In the linear wave propagation regime, an analytical mesh-free Green-function decomposition has been shown as a viable alternative to FDTD and FEM. However, its expansion into nonlinear regimes has remained elusive due to the inherent linear properties of the Green-function approach. This work presents a novel frequency-domain Green function method to describe and model nonlinear wave interactions in isotropic hyperelastic media. As an example of the capabilities of the method, we detail the generation of sum frequency waves when initial quasimonochromatic waves are emitted in a fluid by finite sources. The method is supported by both numerical and experimental results using immersion ultrasonic techniques
    corecore