31 research outputs found

    Wake-active neurons across aging and neurodegeneration: a potential role for sleep disturbances in promoting disease

    Get PDF

    Spatial buffering during slow and paroxysmal sleep oscillations in corticl networks of glial cells in vivo

    No full text
    The ability of neuroglia to buffer local increases of extracellular K(+) has been known from in vitro studies. This property may confer on these cells an active role in the modulation and spreading of cortical oscillatory activities. We addressed the question of the spatial buffering in vivo by performing single and double intraglial recordings, together with measures of the extracellular K(+) and Ca(2+) concentrations ([K(+)](out) and [Ca(2+)](out)) in the cerebral cortex of cats under ketamine and xylazine anesthesia during patterns of slow sleep oscillations and spike-wave seizures. In addition, we estimated the fluctuations of intraglial K(+) concentrations ([K(+)](in)). Measurements obtained during the slow oscillation indicated that glial cells phasically take up part of the extracellular K(+) extruded by neurons during the depolarizing phase of the slow oscillation. During this condition, the redistribution of K(+) appeared to be local. Large steady increases of [K(+)](out) and phasic potassium accumulations were measured during spike-wave seizures. In this condition, [K(+)](in) rose before [K(+)](out) if the glial cells were located at some distance from the epileptic focus, suggesting faster K(+) diffusion through the interglial syncytium. The simultaneously recorded [Ca(2+)](out) dropped steadily during the seizures to levels incompatible with efficient synaptic transmission, but also displayed periodic oscillations, in phase with the intraseizure spike-wave complexes. In view of this fact, and considering the capability of K(+) to modulate neuronal excitability both at the presynaptic and postsynaptic levels, we suggest that the K(+) long-range spatial buffering operated by glia is a parallel synchronizing and/or spreading mechanism during paroxysmal oscillations

    Stimulation of NMDA and AMPA receptors in the rat nucleus basalis of Meynert affects sleep

    No full text
    The nucleus basalis of Meynert (NBM), a heterogeneous area in the basal forebrain involved in the modulation of sleep and wakefulness, is rich in glutamate receptors, and glutamatergic fibers represent an important part of the input to this nucleus. With the use of unilateral infusions in the NBM, the effects of two different glutamatergic subtype agonists, namely N-methyl-D-aspartic acid (NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) hydrobromide, on sleep and wakefulness parameters were def;ermined in fi eely moving rats by means of polygraphic recordings. NMDA (5 nmol) and AMPA (0.4 nmol) induced an increase in wakefulness and an inhibition of slow-wave sleep. AMPA, but not NMDA, also caused a decrease in desynchronized sleep. These AMPA- and NMDA-mediated effects were counteracted by a pretreatment with the specific NMDA antagonist 2-amino-5-phosphonopentanoic acid (20 nmol) and the specific AMPA antagonist 6,7-dinitroquinoxaline-2,3-dione (2 nmol), respectively. The results reported here indicate that 1) the NBM activation of both NMDA and AMPA glutamate receptors exert a modulatory influence on sleep and wakefulness, and 2) AMPA, but not NMDA receptors, are involved in the modulation of desynchronized sleep, suggesting a different role for NBM NMDA and non-NMDA receptors in sleep modulation

    Sleep is differently modulated by basal forebrain GABA(A) and GABA(B) receptors

    No full text
    There is evidence that GABA plays a major role in sleep regulation. GABA(A) receptor agonists and different compounds interacting with the GABA(A) receptor complex, such as barbiturates and benzodiazepines, can interfere with the sleep/wake cycle. On the other hand, there is very little information about the possible role of GABA(B) receptors in sleep modulation. The nucleus basalis of Meynert (NBM), a cholinergic area in the basal forebrain, plays a pivotal role in the modulation of sleep and wakefulness, and both GABA(A) and GABA(B) receptors have been described within the NBM. This study used unilateral infusions in the NBM to determine the effects of 3-hydroxy-5-aminomethylisoxazole hydrobromide (muscimol hydrobromide, a GABA(A) receptor subtype agonist) and beta-(aminomethyl)-4-chlorobenzenepropanoic acid (baclofen, a GABA(B) receptor subtype agonist) on sleep parameters in freely moving rats by means of polygraphic recordings. Muscimol (0.5 nmol) and baclofen (0.7 nmol) induced an increase in slow-wave sleep and an inhibition of wakefulness. Muscimol, but not baclofen, also caused a decrease in desynchronized sleep parameters. The results reported here indicate that 1) the NBM activation of both GABA(A) and GABA(B) receptors influences the sleep/wake cycle, and 2) GABA(A) but not GABA(B) receptors are important for desynchronized sleep modulation, suggesting that the two GABAergic receptors play different roles in sleep modulation

    Activity-dependent pH shifts and periodic recurrence of spontaneous interictal spikes in a model of focal epileptogenesis.

    No full text
    The mechanisms that control the periodicity of spontaneous epileptiform cortical potentials were investigated in the in vitro isolated guinea pig brain preparation. A brief intracortical application of bicuculline in the piriform cortex induced spontaneous interictal spikes (sISs) that recurred with high periodicity (8.5 +/- 3.1 sec, mean +/- SD). Intracellular recordings from principal neurons showed that the early phase of the inter-sIS period is caused by a GABAb receptor-mediated inhibitory potential. The late component of the interspike period correlated to a slowly decaying depolarization abolished at membrane potentials positive to -32.1 +/- 5.3 mV and was not associated with membrane conductance changes. Specific pharmacological tests excluded the contribution of synaptic and intrinsic conductances to the late inter-sIS interval. Recordings with ion-sensitive electrodes demonstrated that sISs determined both a rapid increase in extracellular K+ concentration (0.5-1 mM) and an extracellular alkalinization (0.05-0.08 pH units) that slowly decayed during the inter-sIS period and returned to control values just before a subsequent sIS was generated. These observations were not congruous with the presence of a silent period, because both extracellular increase in K+ and alkalinization are commonly associated with an increase in neuronal excitability. Extracellular alkalinization could be correlated to an sIS-induced intracellular acidification, a phenomenon that reduces cell coupling by impairing gap junction function. When intracellular acidification was transiently prevented by arterial perfusion with NH4Cl (10-20 mM), spontaneous ictal-like epileptiform discharges were induced. In addition, the gap junction blockers octanol (0.2-2 mM) and 18-alpha-glycyrrethinic acid (20 microM) applied either via the arterial system or locally in the cortex completely and reversibly abolished the sIS. The results reported here suggest that the massive cell discharge associated with an sIS induce a strong inhibition, possibly secondary to a pH-dependent uncoupling of gap junctions, that regulates sIS periodicit

    Further evidence for the involvement of epidermal growth factor in the signaling pathway of vitamin B12 (cobalamin) in the rat central nervous system

    No full text
    In order to get further evidence for a mandatory involvement of epidermal growth factor (EGF) in the neutrophic action of vitamin B12 (cobalamin (Cbl)) in the central nervous system (CNS) of the rat, we observed the effects of repeated intracerebroventricular (ICV) microinjections of EGF in rats made Cbl-deficient through total gastrectomy. Morphometric analysis demonstrated a significant reduction in both intramyelinic and interstitial edema in the white matter of the spinal cord (SC) of totally gastrectomized (TGX) rats after treatment. Intramyelinic and interstitial edema are characteristic of Cbl-deficient central neuropathy in the rat. Similar lesions were also present in SC white matter of rats treated with repeated ICV microinjections of specific anti-EGF antibodies without any modification in their Cbl status. These results, together with those of a previous study showing the cessation of EGF synthesis in the CNS of TGX rats, demonstrate that: a) EGF is necessarily involved in the signaling pathway of Cbl in the rat CNS; and b) the lack of a neurotrophic growth factor EGF, and not the mere withdrawal of Cbl, causes or at least contributes to neurodegenerative Cbl-deficient central neuropathy

    Sleep, but not febrile responses of Fisher 344 rats to immune challenge are affected by aging

    No full text
    Sleep is altered in response to infection and immune challenge in humans and non-human animals. Although there are changes in sleep and facets of immune function with aging, sleep responses of aged subjects to immune challenge have received little, if any attention. To test the hypothesis that aging affects sleep responses to immune challenge, intracerebroventricular injections of interleukin 1 (IL-1) were given to young and aged rats and subsequent sleep-wake behavior was determined. Under basal conditions and in the absence of an immune challenge, sleep patterns of young (3 months) and aged (25\u201327 months) Fisher 344 rats did not differ. In young animals, IL-1 (2.5\ua0ng) enhanced non-rapid eye movement (NREM) sleep, inhibited rapid eye movement (REM) sleep, and induced fever. In aged animals, IL-1 administration did not alter NREM sleep, but REM sleep was inhibited and brain temperature increased to the same extent observed in young animals. These results show that alterations in sleep following immune challenge are impacted by aging, whereas febrile responses are not. Since it has been postulated that enhanced NREM sleep may facilitate recovery from microbial infection, the present results also suggest that the lack of NREM sleep responses of aged rats to immune challenge may contribute to the increased infection-induced morbidity and mortality of aged organisms

    Intracerebroventricular injection of interleukin 1 induces high circulating levels of interleukin 6

    No full text
    : IL-1 is known to have a central role in the induction of acute-phase response, and some of its activities (including induction of some acute-phase proteins) were reported to be mediated by an induction of IL-6. Administration to rats of 200 ng of human rIL-1 by intracerebroventricular injection resulted in a more marked induction of circulating IL-6 than the same dose of IL-1 administered systemically (intravenously or intraperitoneally). Induction of serum IL-6 by centrally administered IL-1 was also observed in hypophysectomized or adrenalectomized rats, suggesting that activation of the hypothalamus-pituitary-adrenal axis is not essential for this effect of IL-1. IL-6 induction was also observed after pretreatment with indomethacin, indicating that the effect was dissociated from the pyrogenic activity of IL-1. Induction of IL-6 by a central action could represent a novel pathway in IL-1-induced acute-phase response

    Modulation of systemic interleukin-6 induction by central interleukin-1

    No full text
    : Centrally administered interleukin (IL)-1 [both alpha and beta forms, 200 ng/rat intracerebroventricularly (icv)] results in a larger increase in serum IL-6 than after systemic injection, indicating the brain's role in the acute phase response. This action was prevented by the IL-1-receptor antagonist IL-1Ra (20 micrograms/rat icv). Neither antiserum against corticotropin-releasing factor (CRF) nor the alpha-helical-CRF antagonist (25 micrograms/rat icv) affected IL-6 induction by central IL-1 beta, which, however, was significantly prevented by the synthetic glucocorticoid dexamethasone [3 mg/kg intraperitoneally (ip)]. Naloxone, the opiate antagonist, but not naloxone methiodide, its quaternary salt that does not penetrate the blood-brain barrier (both administered at 10 mg/kg ip), antagonized this action of IL-1 beta. After intracerebroventricular IL-1 beta, IL-6 levels in brain areas (striatum, hippocampus, hypothalamus) were extremely low, suggesting that the brain does not significantly contribute to IL-6 synthesis in this condition. The results show that induction of high serum IL-6 levels by central IL-1 beta is mediated by brain IL-1 receptors and is sensitive to inhibition by corticosteroids. The inhibitory effect of naloxone suggests that central opiates are required for this action of IL-1 beta
    corecore