50 research outputs found

    FOREST FIRE RISK MAPPING FOR THE HIMALAYAN STATE UTTARAKHAND USING GOOGLE EARTH ENGINE

    Get PDF
    Climate change has exacerbated the intensity as well as frequency of forest fire events in the Indian state of Uttarakhand. The present study focusses on undertaking forest fire risk mapping across the state by utilizing geospatial technology along with Google Earth Engine. Ten parameters were identified that have a strong influence in determining fire prone areas. The Analytic Hierarchy Process (AHP) was then implemented for the development of the risk map in which criteria weights were assigned to the parameters based on their ability to influence a forest fire event. The analysis revealed that out of the total forest area, 24.22% is under ‘very high’ risk zone, 29.24% is under ‘high’ risk zone, 18.23% is under ‘moderate’ risk zone, 7.69% is under ‘low’ risk zone and 20.62% is under ‘very low’ risk zone of forest fire. Further study was carried out to determine fire risk levels in populated regions and in some of the most critical nature reserves having high ecological importance which reveals that ‘very high’ and ‘high’ risk zones have greater population density indicating the influence of anthropogenic activities on forest fire occurrence. The results additionally indicate that four national parks and wildlife sanctuaries are particularly vulnerable to forest fires at present which is a source of concern and requires intervention from the stakeholders

    FOREST FIRE BURNT AREA EXTRACTION USING FUZZY INTEGRATION OF MULTI-SENSOR SATELLITE DATA FOR THE HIMALAYAN STATE

    Get PDF
    Burnt area assessment due to forest fires is an important aspect to estimate the extent of loss of biodiversity which has become feasible even in hilly and inaccessible areas with the help of geospatial technologies. But satellite data also has some limitations as it increases commission error by misclassifying non-burnt areas as burnt areas. To reduce this commission error, present study has attempted to integrate multi-sensor satellite data to characterize and extract forest fire burnt areas in Uttarakhand which is a fire prone hilly state in Western Himalaya. Landsat-8 and Sentinel-2 optical datasets have been used to calculate eleven vegetation/burn indices to identify burn patches for fire season of 2022 (February to June). These vegetation/burn indices have been calculated from Landsat-8 and Sentinel-2 datasets and integrated using Fuzzy Logic Modelling to get characterized forest fire burnt area maps. Accuracy assessment has been done using Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) active fire points for the characterized map of burnt area by Landsat-8, Sentinel-2 and combining indices from both sensors. The fuzzy map of burnt area using Landsat-8 showed the accuracy of 66.25%, while Sentinel-2 showed accuracy of 59.79% and the integration of fuzzy burnt area maps of both sensors showed the highest accuracy of 79.66%. This information of characterized burnt areas of a region can help forest managers to identify high vulnerable areas to focus on during the fire season to prevent the losses to natural resources, life and property in the region

    LONG-TERM THERMAL ANOMALY DETECTION AND MAPPING AT PIXEL LEVEL USING A GOOGLE EARTH ENGINE TOOL

    Get PDF
    Frequency of extreme weather events such as cloudbursts, heatwaves etc. have increased as an outcome of changing climate. Identification of the pattern of extreme temperature events is important since it governs various events such as heatwaves, wildfires, droughts, storms, coldwaves etc. Moderate Resolution Imaging Spectroradiometer (MODIS) provides Land Surface Temperature (LST) data at 1 kilometre of spatial resolution at daily interval that can help in the identification and mapping of the anomalies in the temperature at pixel level. This study proposes a global-scale daily long-term thermal anomaly detection tool made using Google Earth Engine (GEE) App. This open source tool with the name of ‘Deviation from Mean’ uses the MODIS LST data available from 2000 till date to detect temperature anomaly based on the deviation of temperature of any day (chosen by the user) from the long-term climatological mean. It also generates a time-series plot of temperature values of any pixel for any date for last 24 years i.e. 2000–2023 in the graphical form to analyze the variation in the temperature over the time. A case study has also been done using the tool to highlight the thermal anomaly experienced over the Indian sub-continent during March-April, 2022 and 2023. This tool is capable of providing thermal anomaly information at global, regional as well as local level that can help in taking region-specific mitigation measures

    Youth futures and a masculine development ethos in the regional story of Uttarakhand

    Get PDF
    Research on the Uttarakhand region, which became a new state in 2000, has focused largely on agrarian livelihoods, religious rituals, development demands, ecological politics and the role of women in regional social movements. This essay discusses another dimension of the regional imaginary—that of a masculine development ethos. Based on ethnographic research and print media sources, this essay focuses on stories, politics, mobilities and imaginations of young men in the years immediately after the achievement of statehood. Despite increased outmigration of youth in search of employment, many young men expressed the dream of maintaining livelihoods in the familiar towns and rural spaces of Uttarakhand, describing their home region as a source of power and agency. In rallies and in print media, young (mostly upper caste) men expressed their disillusionment with the government and the promises of statehood, arguing that their aspirations for development and employment were left unfulfilled. Gendered stories of the region, told in Hindi in rallies and print media, contained references to local places, people and historical events and were produced through local connections and know-how, fostering a regional youth politics. The article argues that Uttarakhand as a region is shaped by the politics of local actors as well as embodied forms of aspiration, affiliation and mobility.IS

    Impact of domain size on the simulation of Indian summer monsoon in RegCM4 using mixed convection scheme and driven by HadGEM2

    No full text
    In this study, a smaller domain over India alone and a larger South Asia (SA) domain have been used in the Regional Climate Model version 4.2 (RegCM4.2) to examine the effect of the domain size on the Indian summer monsoon simulations. These simulations were carried out over a period of 36 years at 50 km horizontal resolution with the lateral boundary forcings of the UK Met Office Hadley Centre Global Circulation Model Version 2.0. Results show that the Indian summer monsoon rainfall is significantly reduced when the domain size for the model integration is reduced from SA to the Indian domain. In case of SA domain simulation, the Equitable Threat Scores have higher values in case of very light, light and moderate rainfall events than those in case of the Indian domain simulation. It is also found that the domain size of model integration has dominant impact on the simulated convective precipitation. The cross-equatorial flow and the Somali Jet are better represented in the SA simulation than those in the Indian domain simulation. The vertically integrated moisture flux over the Arabian Sea in the SA domain simulation is close to that in the NCEP/NCAR reanalysis while it is underestimated in the Indian domain simulation. It is important to note that when RegCM4.2 is integrated over the smaller Indian domain, the effects of the Himalayas and the moisture advection from the Indian seas are not properly represented in the model simulation and hence the monsoon circulation and associated rainfall are underestimated over India

    Phytochemical Composition and Detection of Novel Bioactives in Anther Callus of Catharanthus roseus L.

    No full text
    Catharanthus roseus L. (G.) Don is the most widely studied plant because of its high pharmacological value. In vitro culture uses various plant parts such as leaves, nodes, internodes and roots for inducing callus and subsequent plant regeneration in C. roseus. However, till now, little work has been conducted on anther tissue using plant tissue culture techniques. Therefore, the aim of this work is to establish a protocol for in vitro induction of callus by utilizing anthers as explants in MS (Murashige and Skoog) medium fortified with different concentrations and combinations of PGRs. The best callusing medium contains high α-naphthalene acetic acid (NAA) and low kinetin (Kn) concentrations showing a callusing frequency of 86.6%. SEM–EDX analysis was carried out to compare the elemental distribution on the surfaces of anther and anther-derived calli, and the two were noted to be nearly identical in their elemental composition. Gas chromatography–mass spectrometry (GC–MS) analysis of methanol extracts of anther and anther-derived calli was conducted, which revealed the presence of a wide range of phytocompounds. Some of them are ajmalicine, vindolinine, coronaridine, squalene, pleiocarpamine, stigmasterol, etc. More importantly, about 17 compounds are exclusively present in anther-derived callus (not in anther) of Catharanthus. The ploidy status of anther-derived callus was examined via flow cytometry (FCM), and it was estimated to be 0.76 pg, showing the haploid nature of callus. The present work therefore represents an efficient way to produce high-value medicinal compounds from anther callus in a lesser period of time on a larger scale.</jats:p
    corecore