21 research outputs found

    Abstract Interpretation with Unfoldings

    Full text link
    We present and evaluate a technique for computing path-sensitive interference conditions during abstract interpretation of concurrent programs. In lieu of fixed point computation, we use prime event structures to compactly represent causal dependence and interference between sequences of transformers. Our main contribution is an unfolding algorithm that uses a new notion of independence to avoid redundant transformer application, thread-local fixed points to reduce the size of the unfolding, and a novel cutoff criterion based on subsumption to guarantee termination of the analysis. Our experiments show that the abstract unfolding produces an order of magnitude fewer false alarms than a mature abstract interpreter, while being several orders of magnitude faster than solver-based tools that have the same precision.Comment: Extended version of the paper (with the same title and authors) to appear at CAV 201

    Dataflow Analysis for Datarace-Free Programs

    Full text link
    Memory models for shared-memory concurrent programming languages typically guarantee sequential consistency (SC) semantics for datarace-free (DRF) programs, while providing very weak or no guarantees for non-DRF programs. In effect programmers are expected to write only DRF programs, which are then executed with SC semantics. With this in mind, we propose a novel scalable solution for dataflow analysis of concurrent programs, which is proved to be sound for DRF programs with SC semantics. We use the synchronization structure of the program to propagate dataflow information among threads without requiring to consider all interleavings explicitly. Given a dataflow analysis that is sound for sequential programs and meets certain criteria, our technique automatically converts it to an analysis for concurrent programs

    Thread-Modular Verification is Cartesian Abstract Interpretation

    No full text
    Verification of multithreaded programs is difficult. It requires reasoning about state spaces that grow exponentially in the number of concurrent threads. Successful verification techniques based on modular composition of over-approximations of thread behaviors have been designed for this task. These techniques have been traditionally described in assume-guarantee style, which does not admit reasoning about the abstraction properties of the involved compositional argument. Flanagan and Qadeer thread-modular algorithm is a characteristic representative of such techniques. In this paper, we investigate the formalization of this algorithm in the framework of abstract interpretation. We identify the abstraction that the algorithm implements; its definition involves Cartesian products of sets. Our result provides a basis for the systematic study of similar abstractions for dealing with the state explosion problem. As a first step in this direction, our result provides a characterization of a minimal increase in the precision of the Flanagan and Qadeer algorithm that leads to the loss of its polynomial complexity

    Precise Thread-Modular Verification

    No full text

    Epoxy gel gauges for measurements in equivalent materials

    No full text

    Inductive data flow graphs

    No full text
    corecore