10,277 research outputs found

    A statistical study of the global structure of the ring current

    Get PDF
    [1] In this paper we derive the average configuration of the ring current as a function of the state of the magnetosphere as indicated by the Dst index. We sort magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) by spatial location and by the Dst index in order to produce magnetic field maps. From these maps we calculate local current systems by taking the curl of the magnetic field. We find both the westward (outer) and the eastward (inner) components of the ring current. We find that the ring current intensity varies linearly with Dst as expected and that the ring current is asymmetric for all Dst values. The azimuthal peak of the ring current is located in the afternoon sector for quiet conditions and near midnight for disturbed conditions. The ring current also moves closer to the Earth during disturbed conditions. We attempt to recreate the Dst index by integrating the magnetic perturbations caused by the ring current. We find that we need to multiply our computed disturbance by a factor of 1.88 ± 0.27 and add an offset of 3.84 ± 4.33 nT in order to get optimal agreement with Dst. When taking into account a tail current contribution of roughly 25%, this agrees well with our expectation of a factor of 1.3 to 1.5 based on a partially conducting Earth. The offset that we have to add does not agree well with an expected offset of approximately 20 nT based on solar wind pressure

    The average magnetic field draping and consistent plasma properties of the Venus magnetotail

    Get PDF
    A new technique has been developed to determine the average structure of the Venus magnetotail (in the range from −8 Rv to −12 Rv) from the Pioneer Venus magnetometer observations. The spacecraft position with respect to the cross-tail current sheet is determined from an observed relationship between the field-draping angle and the magnitude of the field referenced to its value in the nearby magnetosheath. This allows us statistically to remove the effects of tail flapping and variability of draping for the first time and thus to map the average field configuration in the Venus tail. From this average configuration we calculate the cross-tail current density distribution and J × B forces. Continuity of the tangential electric field is utilized to determine the average variations of the X-directed velocity which is shown to vary from −250 km/s at −8 Rv to −470 km/s at −12 Rv. From the calculated J × B forces, plasma velocity, and MHD momentum equation the approximate plasma acceleration, density, and temperature in the Venus tail are determined. The derived ion density is approximately ∼0.07 p+/cm³ (0.005 O+/cm³) in the lobes and ∼0.9 p+/cm³ (0.06 O+/cm³) in the current sheet, while the derived approximate average plasma temperature for the tail is ∼6×106 K for a hydrogen plasma or ∼9×107 K for an oxygen plasma

    Global energetic neutral atom (ENA) measurements and their association with the Dst index

    Get PDF
    We present a new global magnetospheric index that measures the intensity of the Earth\u27s ring current through energetic neutral atoms (ENAs). We have named it the Global Energetic Neutral Index (GENI), and it is derived from ENA measurements obtained by the Imaging Proton Spectrometer (IPS), part of the Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD) experiment on the POLAR satellite. GENI provides a simple orbit-independent global sum of ENAs measured with IPS. Actual ENA measurements for the same magnetospheric state look different when seen from different points in the POLAR orbit. In addition, the instrument is sensitive to weak ion populations in the polar cap, as well as cosmic rays. We have devised a method for removing the effects of cosmic rays and weak ion fluxes, in order to produce an image of “pure” ENA counts. We then devised a method of normalizing the ENA measurements to remove the orbital bias effect. The normalized data were then used to produce the GENI. We show, both experimentally and theoretically the approximate proportionality between the GENI and the Dst index. In addition we discuss possible implications of this relation. Owing to the high sensitivity of IPS to ENAs, we can use these data to explore the ENA/Dst relationship not only during all phases of moderate geomagnetic storms, but also during quiescent ring current periods

    Charge exchange contribution to the decay of the ring current, measured by energetic neutral atoms (ENAs)

    Get PDF
    In this paper we calculate the contribution of charge exchange to the decay of the ring current. Past works have suggested that charge exchange of ring current protons is primarily responsible for the decay of the ring current during the late recovery phase, but there is still much debate about the fast decay of the early recovery phase. We use energetic neutral atom (ENA) measurements from Polar to calculate the total ENA energy escape. To get the total ENA escape we apply a forward modeling technique, and to estimate the total ring current energy escape we use the Dessler-Parker-Sckopke relationship. We find that during the late recovery phase of the March 10, 1998 storm ENAs with energies greater than 17.5 keV can account for 75% of the estimated energy loss from the ring current. During the fast recovery the measured ENAs can only account for a small portion of the total energy loss. We also find that the lifetime of the trapped ions is significantly shorter during the fast recovery phase than during the late recovery phase, suggesting that different processes are operating during the two phases

    On the solar wind control of cusp aurora during northward IMF

    Get PDF
    [1] The location of cusp aurora during northward interplanetary magnetic field (IMF) conditions and the solar wind control of that location are explored. The cusp aurora is imaged by the Imager for Magnetopause-to-Aurora Global Exploration\u27s (IMAGE) Far Ultraviolet Instrument (FUV). Predicted locations of the cusp aurora were computed by assuming anti-parallel reconnection between the observed IMF orientation and the 1996 Tsyganenko model magnetopause magnetic field. While the majority of anti-parallel reconnection sites tailward of the cusp, when mapped to the ionosphere, coincide with the observed cusp aurora, the anti-parallel merging hypothesis cannot explain certain aspects of the observations, including its location dependence with IMF + By
    corecore