14 research outputs found
Recommended from our members
Effects of sea-level rise on physiological ecology of populations of a ground-dwelling ant.
INTRODUCTION: Sea-level rise is a consequence of climate change that can impact the ecological and physiological changes of coastal, ground-dwelling species. Sea-level rise has a potential to inundate birds, rodents, spiders, and insects that live on the ground in coastal areas. Yet, there is still much to be learned concerning the specifics of these impacts. The red imported fire ant Solenopsis invicta (Buren) excavates soil for its home and is capable of surviving flooding. Because of their ground-dwelling life history and rapid reproduction, fire ants make an ideal model for discovery and prediction of changes that may be due to sea-level rise. There are up to 500,000 individuals in a colony, and these invasive ants naturally have a painful sting. However, observations suggest that colonies of fire ants that dwell in tidally-influenced areas are more aggressive with more frequent stings and more venom injected per sting (behavioral and physiological changes) than those located inland. This may be an adaption to sea-level rise. Therefore, the objective of this study is to elucidate differences in inland and coastal defensiveness via micro-dissection and comparison of head width, head length, stinger length, and venom sac volume. But first because fire ants ability to raft on brackish tidal water is unknown, it had to be determined if fire ants could indeed raft in brackish water and examine the behavior differences between those flooded with freshwater vs. saltwater. METHODS: To test the coastal-aggression hypothesis, inland colonies and coastal colonies, which experience relatively greater amounts of flooding, specifically regular tidal and windblown water and oscillations (i.e. El NiĆo Southern Oscillation) from the Gulf of Mexico, were collected. To mimic sea-level rise, the colonies were flooded in salinities that correspond to both their collection site and conditions found in a variety of locales and situations (such as storm surge from a tropical storm). Individual ants were immediately taken from each colony for dissection before flooding, 1-hour into flooding, and 24-hours into flooding. RESULTS AND DISCUSSION: Fire ants use their venom to defend themselves and to communicate alarm or aggression. Dissections and measurement of heads, venom sacs, and stingers revealed both coastal and inland colonies experience an increase in venom sac volume after 24 hours; in fact coastal colonies increased their venom volume by 75% after 24 h of flooding Whether this venom sac enlargement is due to diffusion of water or venom sac production is unknown. These ground-dwelling ants exhibit physiological and behavioral adaptations to ongoing sea-level rise possibly indicating that they are responding to increased flooding. Fire ants will raft on high-salinity water; and sea-level rise may cause stings by flooded ants to be more severe because of increased venom volume
Effects of sea-level rise on physiological ecology of populations of a ground-dwelling ant.
INTRODUCTION:Sea-level rise is a consequence of climate change that can impact the ecological and physiological changes of coastal, ground-dwelling species. Sea-level rise has a potential to inundate birds, rodents, spiders, and insects that live on the ground in coastal areas. Yet, there is still much to be learned concerning the specifics of these impacts. The red imported fire ant Solenopsis invicta (Buren) excavates soil for its home and is capable of surviving flooding. Because of their ground-dwelling life history and rapid reproduction, fire ants make an ideal model for discovery and prediction of changes that may be due to sea-level rise. There are up to 500,000 individuals in a colony, and these invasive ants naturally have a painful sting. However, observations suggest that colonies of fire ants that dwell in tidally-influenced areas are more aggressive with more frequent stings and more venom injected per sting (behavioral and physiological changes) than those located inland. This may be an adaption to sea-level rise. Therefore, the objective of this study is to elucidate differences in inland and coastal defensiveness via micro-dissection and comparison of head width, head length, stinger length, and venom sac volume. But first because fire ants' ability to raft on brackish tidal water is unknown, it had to be determined if fire ants could indeed raft in brackish water and examine the behavior differences between those flooded with freshwater vs. saltwater. METHODS:To test the coastal-aggression hypothesis, inland colonies and coastal colonies, which experience relatively greater amounts of flooding, specifically regular tidal and windblown water and oscillations (i.e. El NiĆo Southern Oscillation) from the Gulf of Mexico, were collected. To mimic sea-level rise, the colonies were flooded in salinities that correspond to both their collection site and conditions found in a variety of locales and situations (such as storm surge from a tropical storm). Individual ants were immediately taken from each colony for dissection before flooding, 1-hour into flooding, and 24-hours into flooding. RESULTS AND DISCUSSION:Fire ants use their venom to defend themselves and to communicate alarm or aggression. Dissections and measurement of heads, venom sacs, and stingers revealed both coastal and inland colonies experience an increase in venom sac volume after 24 hours; in fact coastal colonies increased their venom volume by 75% after 24 h of flooding Whether this venom sac enlargement is due to diffusion of water or venom sac production is unknown. These ground-dwelling ants exhibit physiological and behavioral adaptations to ongoing sea-level rise possibly indicating that they are responding to increased flooding. Fire ants will raft on high-salinity water; and sea-level rise may cause stings by flooded ants to be more severe because of increased venom volume