3,013 research outputs found

    Inter-dimensional Degeneracies in van der Waals Clusters and Quantum Monte Carlo Computation of Rovibrational States

    Get PDF
    Quantum Monte Carlo estimates of the spectrum of rotationally invariant states of noble gas clusters suggest inter-dimensional degeneracy in N−1N-1 and N+1N+1 spacial dimensions. We derive this property by mapping the Schr\"odinger eigenvalue problem onto an eigenvalue equation in which DD appears as a continuous variable. We discuss implications for quantum Monte Carlo and dimensional scaling methods

    Van der Waals clusters in the ultra-quantum limit: a Monte Carlo study

    Get PDF
    Bosonic van der Waals clusters of sizes three, four and five are studied by diffusion quantum Monte-Carlo techniques. In particular we study the unbinding transition, the ultra-quantum limit where the ground state ceases to exist as a bound state. We discuss the quality of trial wave functions used in the calculations, the critical behavior in the vicinity of the unbinding transition, and simple improvements of the diffusion Monte Carlo algorithm.Comment: World Wide Web URL http://www.phys.uri.edu/people/mark_meierovich/visual/Main.html contains an informal presentation with color graphic

    Surface and bulk transitions in three-dimensional O(n) models

    Get PDF
    Using Monte Carlo methods and finite-size scaling, we investigate surface criticality in the O(n)(n) models on the simple-cubic lattice with n=1n=1, 2, and 3, i.e. the Ising, XY, and Heisenberg models. For the critical couplings we find Kc(n=2)=0.4541655(10)K_{\rm c}(n=2)=0.454 1655 (10) and Kc(n=3)=0.693002(2)K_{\rm c}(n=3)= 0.693 002 (2). We simulate the three models with open surfaces and determine the surface magnetic exponents at the ordinary transition to be yh1(o)=0.7374(15)y_{h1}^{\rm (o)}=0.7374 (15), 0.781(2)0.781 (2), and 0.813(2)0.813 (2) for n=1n=1, 2, and 3, respectively. Then we vary the surface coupling K1K_1 and locate the so-called special transition at κc(n=1)=0.50214(8)\kappa_{\rm c} (n=1)=0.50214 (8) and κc(n=2)=0.6222(3)\kappa_{\rm c} (n=2)=0.6222 (3), where κ=K1/K−1\kappa=K_1/K-1. The corresponding surface thermal and magnetic exponents are yt1(s)=0.715(1)y_{t1}^{\rm (s)} =0.715 (1) and yh1(s)=1.636(1)y_{h1}^{\rm (s)} =1.636 (1) for the Ising model, and yt1(s)=0.608(4)y_{t1}^{\rm (s)} =0.608 (4) andyh1(s)=1.675(1)y_{h1}^{\rm (s)} =1.675 (1) for the XY model. Finite-size corrections with an exponent close to -1/2 occur for both models. Also for the Heisenberg model we find substantial evidence for the existence of a special surface transition.Comment: TeX paper and 10 eps figure

    Automotive Stirling Engine Development Program

    Get PDF
    Activities performed on Mod I engine testing and test results; the manufacture, assembly, and test of a Mod I engine in the United States; design initiation of the Mod I-A engine system; transient performance testing; Stirling reference engine manufacturing and reduced size studies; components and subsystems; and the study and test of low cost alloys are summarized

    Transfer-matrix approach to the three-dimensional bond percolation: An application of Novotny's formalism

    Get PDF
    A transfer-matrix simulation scheme for the three-dimensional (d=3) bond percolation is presented. Our scheme is based on Novotny's transfer-matrix formalism, which enables us to consider arbitrary (integral) number of sites N constituting a unit of the transfer-matrix slice even for d=3. Such an arbitrariness allows us to perform systematic finite-size-scaling analysis of the criticality at the percolation threshold. Diagonalizing the transfer matrix for N =4,5,...,10, we obtain an estimate for the correlation-length critical exponent nu = 0.81(5)

    Finite size scaling of the correlation length above the upper critical dimension

    Full text link
    We show numerically that correlation length at the critical point in the five-dimensional Ising model varies with system size L as L^{5/4}, rather than proportional to L as in standard finite size scaling (FSS) theory. Our results confirm a hypothesis that FSS expressions in dimension d greater than the upper critical dimension of 4 should have L replaced by L^{d/4} for cubic samples with periodic boundary conditions. We also investigate numerically the logarithmic corrections to FSS in d = 4.Comment: 5 pages, 6 postscript figure

    Automotive Stirling Engine Development Program

    Get PDF
    Mod I engine testing and test results, the test of a Mod I engine in the United States, Mod I engine characterization and analysis, Mod I Transient Test Bed fuel economy, Mod I-A engine performance are discussed. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are also covered. The overall program philosophy is outlined, and data and results are presented

    Critical Excitation Spectrum of Quantum Chain With A Local 3-Spin Coupling

    Full text link
    This article reports a measurement of the low-energy excitation spectrum along the critical line for a quantum spin chain having a local interaction between three Ising spins and longitudinal and transverse magnetic fields. The measured excitation spectrum agrees with that predicted by the (D4_4, A4_4) conformal minimal model under a nontrivial correspondence between translations at the critical line and discrete lattice translations. Under this correspondence, the measurements confirm a prediction that the critical line of this quantum spin chain and the critical point of the 2D 3-state Potts model are in the same universality class.Comment: 7 pages, 2 figure

    Automotive Stirling Engine Development Program

    Get PDF
    Program status and plans are discussed for component and technology development; reference engine system design, the upgraded Mod 1 engine; industry test and evaluation; and product assurance. Four current Mod 1 engines reached a total of 2523 operational hours, while two upgraded engines accumulated 166 hours
    • …
    corecore