1,982 research outputs found

    Intravenous conscious sedation in patients under 16 years of age. Fact or fiction?

    Get PDF
    Recently published guidelines on the use of conscious sedation in dentistry have published varying recommendations on the lower age limit for the use of intravenous conscious sedation. There are a large number of dentists currently providing dental treatment for paediatric patients under intravenous conscious sedation. The 18 cases reported here (age range 11-15 years), were successfully managed with intravenous conscious sedation. The experience in this paper is not sufficient evidence to recommend the wholesale use of intravenous conscious sedation in patients who are under 16 years. The fact that a range of operators can use these techniques on paediatric patients would suggest that further study should be carried out in this population. The guidance should be modified to say there is insufficient evidence to support the use of intravenous conscious sedation in children, rather than arbitrarily selecting a cut off point at age 16 years

    Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model

    Full text link
    The two-dimensional kinetic Ising model, when exposed to an oscillating applied magnetic field, has been shown to exhibit a nonequilibrium, second-order dynamic phase transition (DPT), whose order parameter Q is the period-averaged magnetization. It has been established that this DPT falls in the same universality class as the equilibrium phase transition in the two-dimensional Ising model in zero applied field. Here we study for the first time the scaling of the dynamic order parameter with respect to a nonzero, period-averaged, magnetic `bias' field, H_b, for a DPT produced by a square-wave applied field. We find evidence that the scaling exponent, \delta_d, of H_b at the critical period of the DPT is equal to the exponent for the critical isotherm, \delta_e, in the equilibrium Ising model. This implies that H_b is a significant component of the field conjugate to Q. A finite-size scaling analysis of the dynamic order parameter above the critical period provides further support for this result. We also demonstrate numerically that, for a range of periods and values of H_b in the critical region, a fluctuation-dissipation relation (FDR), with an effective temperature T_{eff}(T, P, H_0) depending on the period, and possibly the temperature and field amplitude, holds for the variables Q and H_b. This FDR justifies the use of the scaled variance of Q as a proxy for the nonequilibrium susceptibility, \partial / \partial H_b, in the critical region.Comment: revised version; 31 pages, 12 figures; accepted by Phys. Rev.

    Evidence for a dynamic phase transition in [Co/Pt]_3 magnetic multilayers

    Full text link
    A dynamic phase transition (DPT) with respect to the period P of an applied alternating magnetic field has been observed previously in numerical simulations of magnetic systems. However, experimental evidence for this DPT has thus far been limited to qualitative observations of hysteresis loop collapse in studies of hysteresis loop area scaling. Here, we present significantly stronger evidence for the experimental observation of this DPT, in a [Co(4 A)/Pt(7 A)]_3-multilayer system with strong perpendicular anisotropy. We applied an out-of-plane, time-varying (sawtooth) field to the [Co/Pt]_3 multilayer, in the presence of a small additional constant field, H_b. We then measured the resulting out-of-plane magnetization time series to produce nonequilibrium phase diagrams (NEPDs) of the cycle-averaged magnetization, Q, and its variance, Var(Q), as functions of P and H_b. The experimental NEPDs are found to strongly resemble those calculated from simulations of a kinetic Ising model under analagous conditions. The similarity of the experimental and simulated NEPDs, in particular the presence of a localized peak in the variance Var(Q) in the experimental results, constitutes strong evidence for the presence of this DPT in our magnetic multilayer samples. Technical challenges related to the hysteretic nature and response time of the electromagnet used to generate the time-varying applied field precluded us from extracting meaningful critical scaling exponents from the current data. However, based on our results, we propose refinements to the experimental procedure which could potentially enable the determination of critical exponents in the future.Comment: substantial revision; 26 pages, 9 figures; to appear in Phys. Rev.

    Are You PEPped and PrEPped for Travel? Risk Mitigation of HIV Infection for Travelers

    Get PDF
    The HIV pandemic persists globally and travelers are at risk for infection by the Human Immunodeficiency Virus (HIV). While HIV-focused guidelines delineate risk stratification and mitigation strategies for people in their home communities, travel issues are not addressed. In this review, direct and indirect evidence on HIV risk among travelers is explored. The burgeoning practice of employing pre-exposure prophylaxis (PrEP) with anti-retroviral therapy in the non-travel setting is introduced, as well as the more established use of post-exposure prophylaxis (PEP). Challenges in applying these lessons to travelers are discussed, and a new guidelines process is scoped and recommended

    Fake Supergravity and Domain Wall Stability

    Full text link
    We review the generalized Witten-Nester spinor stability argument for flat domain wall solutions of gravitational theories. Neither the field theory nor the solution need be supersymmetric. Nor is the space-time dimension restricted. We develop the non-trivial extension required for AdS-sliced domain walls and apply this to show that the recently proposed "Janus" solution of Type IIB supergravity is stable non-perturbatively for a broad class of deformations. Generalizations of this solution to arbitrary dimension and a simple curious linear dilaton solution of Type IIB supergravity are byproducts of this work.Comment: 37 pages, 3 figures, v2: minor corrections, references and acknowledgments adde

    Simultaneity and generalized connections in general relativity

    Full text link
    Stationary extended frames in general relativity are considered. The requirement of stationarity allows to treat the spacetime as a principal fiber bundle over the one-dimensional group of time translations. Over this bundle a connection form establishes the simultaneity between neighboring events accordingly with the Einstein synchronization convention. The mathematics involved is that of gauge theories where a gauge choice is interpreted as a global simultaneity convention. Then simultaneity in non-stationary frames is investigated: it turns to be described by a gauge theory in a fiber bundle without structure group, the curvature being given by the Fr\"olicher-Nijenhuis bracket of the connection. The Bianchi identity of this gauge theory is a differential relation between the vorticity field and the acceleration field. In order for the simultaneity connection to be principal, a necessary and sufficient condition on the 4-velocity of the observers is given.Comment: RevTeX, 9 pages, 2 figures, 1 table. Previous title "The gauge nature of simultaneity". Classical and Quantum Gravity http://www.iop.org/EJ/journal/CQ

    Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750)

    No full text
    The first historically documented pandemic caused by Yersinia pestis began as the Justinianic Plague in 541 within the Roman Empire and continued as the so-called First Pandemic until 750. Although paleogenomic studies have previously identified the causative agent as Y. pestis, little is known about the bacterium’s spread, diversity, and genetic history over the course of the pandemic. To elucidate the microevolution of the bacterium during this time period, we screened human remains from 21 sites in Austria, Britain, Germany, France, and Spain for Y. pestis DNA and reconstructed eight genomes. We present a methodological approach assessing single-nucleotide polymorphisms (SNPs) in ancient bacterial genomes, facilitating qualitative analyses of low coverage genomes from a metagenomic background. Phylogenetic analysis on the eight reconstructed genomes reveals the existence of previously undocumented Y. pestis diversity during the sixth to eighth centuries, and provides evidence for the presence of multiple distinct Y. pestis strains in Europe. We offer genetic evidence for the presence of the Justinianic Plague in the British Isles, previously only hypothesized from ambiguous documentary accounts, as well as the parallel occurrence of multiple derived strains in central and southern France, Spain, and southern Germany. Four of the reported strains form a polytomy similar to others seen across the Y. pestis phylogeny, associated with the Second and Third Pandemics. We identified a deletion of a 45-kb genomic region in the most recent First Pandemic strains affecting two virulence factors, intriguingly overlapping with a deletion found in 17th- to 18th-century genomes of the Second Pandemic. © 2019 National Academy of Sciences. All rights reserved
    • 

    corecore