4,065 research outputs found

    Ellipticity of Structures in CMB Sky Maps

    Full text link
    We study the ellipticity of contour lines in the sky maps of the cosmic microwave background (CMB) as well as other measures of elongation. The sensitivity of the elongation on the resolution of the CMB maps which depends on the pixelization and the beam profile of the detector, is investigated. It is shown that the current experimental accuracy does not allow to discriminate between cosmological models which differ in curvature by Delta Omega_tot=0.05. Analytical expressions are given for the case that the statistical properties of the CMB are those of two-dimensional Gaussian random fields

    Application of compressed sensing to the simulation of atomic systems

    Full text link
    Compressed sensing is a method that allows a significant reduction in the number of samples required for accurate measurements in many applications in experimental sciences and engineering. In this work, we show that compressed sensing can also be used to speed up numerical simulations. We apply compressed sensing to extract information from the real-time simulation of atomic and molecular systems, including electronic and nuclear dynamics. We find that for the calculation of vibrational and optical spectra the total propagation time, and hence the computational cost, can be reduced by approximately a factor of five.Comment: 7 pages, 5 figure

    Nuclear Magnetic Resonance and Hyperfine Structure

    Get PDF
    Contains reports on four research projects

    CMB Anisotropy of the Poincare Dodecahedron

    Full text link
    We analyse the anisotropy of the cosmic microwave background (CMB) for the Poincare dodecahedron which is an example for a multi-connected spherical universe. We compare the temperature correlation function and the angular power spectrum for the Poincare dodecahedral universe with the first-year WMAP data and find that this multi-connected universe can explain the surprisingly low CMB anisotropy on large scales found by WMAP provided that the total energy density parameter Omega_tot is in the range 1.016...1.020. The ensemble average over the primordial perturbations is assumed to be the scale-invariant Harrison-Zel'dovich spectrum. The circles-in-the-sky signature is studied and it is found that the signal of the six pairs of matched circles could be missed by current analyses of CMB sky maps

    How well-proportioned are lens and prism spaces?

    Full text link
    The CMB anisotropies in spherical 3-spaces with a non-trivial topology are analysed with a focus on lens and prism shaped fundamental cells. The conjecture is tested that well proportioned spaces lead to a suppression of large-scale anisotropies according to the observed cosmic microwave background (CMB). The focus is put on lens spaces L(p,q) which are supposed to be oddly proportioned. However, there are inhomogeneous lens spaces whose shape of the Voronoi domain depends on the position of the observer within the manifold. Such manifolds possess no fixed measure of well-proportioned and allow a predestined test of the well-proportioned conjecture. Topologies having the same Voronoi domain are shown to possess distinct CMB statistics which thus provide a counter-example to the well-proportioned conjecture. The CMB properties are analysed in terms of cyclic subgroups Z_p, and new point of view for the superior behaviour of the Poincar\'e dodecahedron is found

    Can one hear the shape of the Universe?

    Get PDF
    It is shown that the recent observations of NASA's explorer mission "Wilkinson Microwave Anisotropy Probe" (WMAP) hint that our Universe may possess a non-trivial topology. As an example we discuss the Picard space which is stretched out into an infinitely long horn but with finite volume.Comment: 4 page

    CMB Anisotropy of Spherical Spaces

    Full text link
    The first-year WMAP data taken at their face value hint that the Universe might be slightly positively curved and therefore necessarily finite, since all spherical (Clifford-Klein) space forms M^3 = S^3/Gamma, given by the quotient of S^3 by a group Gamma of covering transformations, possess this property. We examine the anisotropy of the cosmic microwave background (CMB) for all typical groups Gamma corresponding to homogeneous universes. The CMB angular power spectrum and the temperature correlation function are computed for the homogeneous spaces as a function of the total energy density parameter Omega_tot in the large range [1.01, 1.20] and are compared with the WMAP data. We find that out of the infinitely many homogeneous spaces only the three corresponding to the binary dihedral group T*, the binary octahedral group O*, and the binary icosahedral group I* are in agreement with the WMAP observations. Furthermore, if Omega_tot is restricted to the interval [1.00, 1.04], the space described by T* is excluded since it requires a value of Omega_tot which is probably too large being in the range [1.06, 1.07]. We thus conclude that there remain only the two homogeneous spherical spaces S^3/O* and S^3/I* with Omega_tot of about 1.038 and 1.018, respectively, as possible topologies for our Universe.Comment: A version with high resolution sky maps can be obtained at http://www.physik.uni-ulm.de/theo/qc

    Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-beta and Runx2 in bone is required for hearing

    Get PDF
    Publisher version: http://www.nature.com/embor/journal/v11/n10/full/embor2010135.htmlDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEDA - 20100917 IS - 1469-3178 (Electronic) IS - 1469-221X (Linking) LA - ENG PT - JOURNAL ARTICLEPhysical cues, such as extracellular matrix stiffness, direct cell differentiation and support tissue-specific function. Perturbation of these cues underlies diverse pathologies, including osteoarthritis, cardiovascular disease and cancer. However, the molecular mechanisms that establish tissue-specific material properties and link them to healthy tissue function are unknown. We show that Runx2, a key lineage-specific transcription factor, regulates the material properties of bone matrix through the same transforming growth factor-beta (TGFbeta)-responsive pathway that controls osteoblast differentiation. Deregulated TGFbeta or Runx2 function compromises the distinctly hard cochlear bone matrix and causes hearing loss, as seen in human cleidocranial dysplasia. In Runx2(+/-) mice, inhibition of TGFbeta signalling rescues both the material properties of the defective matrix, and hearing. This study elucidates the unknown cause of hearing loss in cleidocranial dysplasia, and demonstrates that a molecular pathway controlling cell differentiation also defines material properties of extracellular matrix. Furthermore, our results suggest that the careful regulation of these properties is essential for healthy tissue functio
    corecore