15 research outputs found

    A multifractal zeta function for cookie cutter sets

    Full text link
    Starting with the work of Lapidus and van Frankenhuysen a number of papers have introduced zeta functions as a way of capturing multifractal information. In this paper we propose a new multifractal zeta function and show that under certain conditions the abscissa of convergence yields the Hausdorff multifractal spectrum for a class of measures

    Dissipative Properties of Systems Composed of High-Loss and Lossless Components

    Full text link
    We study here dissipative properties of systems composed of two components one of which is highly lossy and the other is lossless. A principal result of our studies is that all the eigenmodes of such a system split into two distinct classes characterized as high-loss and low-loss. Interestingly, this splitting is more pronounced the higher the loss of the lossy component. In addition, the real frequencies of the high-loss eigenmodes can become very small and even can vanish entirely, which is the case of overdamping.Comment: Revision; Improved exposition and typos corrected; 45 pages, 4 figure

    Kirchhoff's Rule for Quantum Wires

    Full text link
    In this article we formulate and discuss one particle quantum scattering theory on an arbitrary finite graph with nn open ends and where we define the Hamiltonian to be (minus) the Laplace operator with general boundary conditions at the vertices. This results in a scattering theory with nn channels. The corresponding on-shell S-matrix formed by the reflection and transmission amplitudes for incoming plane waves of energy E>0E>0 is explicitly given in terms of the boundary conditions and the lengths of the internal lines. It is shown to be unitary, which may be viewed as the quantum version of Kirchhoff's law. We exhibit covariance and symmetry properties. It is symmetric if the boundary conditions are real. Also there is a duality transformation on the set of boundary conditions and the lengths of the internal lines such that the low energy behaviour of one theory gives the high energy behaviour of the transformed theory. Finally we provide a composition rule by which the on-shell S-matrix of a graph is factorizable in terms of the S-matrices of its subgraphs. All proofs only use known facts from the theory of self-adjoint extensions, standard linear algebra, complex function theory and elementary arguments from the theory of Hermitean symplectic forms.Comment: 40 page

    Random Matrices close to Hermitian or unitary: overview of methods and results

    Full text link
    The paper discusses progress in understanding statistical properties of complex eigenvalues (and corresponding eigenvectors) of weakly non-unitary and non-Hermitian random matrices. Ensembles of this type emerge in various physical contexts, most importantly in random matrix description of quantum chaotic scattering as well as in the context of QCD-inspired random matrix models.Comment: Published version, with a few more misprints correcte

    THE g-AREAS AND THE COMMUTATOR LENGTH

    No full text
    corecore