15 research outputs found
A multifractal zeta function for cookie cutter sets
Starting with the work of Lapidus and van Frankenhuysen a number of papers
have introduced zeta functions as a way of capturing multifractal information.
In this paper we propose a new multifractal zeta function and show that under
certain conditions the abscissa of convergence yields the Hausdorff
multifractal spectrum for a class of measures
Dissipative Properties of Systems Composed of High-Loss and Lossless Components
We study here dissipative properties of systems composed of two components
one of which is highly lossy and the other is lossless. A principal result of
our studies is that all the eigenmodes of such a system split into two distinct
classes characterized as high-loss and low-loss. Interestingly, this splitting
is more pronounced the higher the loss of the lossy component. In addition, the
real frequencies of the high-loss eigenmodes can become very small and even can
vanish entirely, which is the case of overdamping.Comment: Revision; Improved exposition and typos corrected; 45 pages, 4
figure
Kirchhoff's Rule for Quantum Wires
In this article we formulate and discuss one particle quantum scattering
theory on an arbitrary finite graph with open ends and where we define the
Hamiltonian to be (minus) the Laplace operator with general boundary conditions
at the vertices. This results in a scattering theory with channels. The
corresponding on-shell S-matrix formed by the reflection and transmission
amplitudes for incoming plane waves of energy is explicitly given in
terms of the boundary conditions and the lengths of the internal lines. It is
shown to be unitary, which may be viewed as the quantum version of Kirchhoff's
law. We exhibit covariance and symmetry properties. It is symmetric if the
boundary conditions are real. Also there is a duality transformation on the set
of boundary conditions and the lengths of the internal lines such that the low
energy behaviour of one theory gives the high energy behaviour of the
transformed theory. Finally we provide a composition rule by which the on-shell
S-matrix of a graph is factorizable in terms of the S-matrices of its
subgraphs. All proofs only use known facts from the theory of self-adjoint
extensions, standard linear algebra, complex function theory and elementary
arguments from the theory of Hermitean symplectic forms.Comment: 40 page
Random Matrices close to Hermitian or unitary: overview of methods and results
The paper discusses progress in understanding statistical properties of
complex eigenvalues (and corresponding eigenvectors) of weakly non-unitary and
non-Hermitian random matrices. Ensembles of this type emerge in various
physical contexts, most importantly in random matrix description of quantum
chaotic scattering as well as in the context of QCD-inspired random matrix
models.Comment: Published version, with a few more misprints correcte