113 research outputs found

    Requirement for PCNA in DNA Mismatch Repair at a Step Preceding DNA Resynthesis

    Get PDF
    Abstractid system was used to screen yeast and human expression libraries for proteins that interact with mismatch repair proteins. PCNA was recovered from both libraries and shown in the case of yeast to interact with both MLH1 and MSH2. A yeast strain containing a mutation in the PCNA gene had a strongly elevated mutation rate in a dinucleotide repeat, and the rate was not further elevated in a strain also containing a mutation in MLH1. Mismatch repair activity was examined in human cell extracts using an assay that does not require DNA repair synthesis. Activity was inhibited by p21 WAF1 or a p21 peptide, both of which bind to PCNA, and activity was restored to inhibited reactions by addition of PCNA. The data suggest a PCNA requirement in mismatch repair at a step preceding DNA resynthesis. The ability of PCNA to bind to MLH1 and MSH2 may reflect linkage between mismatch repair and replication and may be relevant to the roles of mismatch repair proteins in other DNA transactions

    Modelling Human Regulatory Variation in Mouse: Finding the Function in Genome-Wide Association Studies and Whole-Genome Sequencing

    Get PDF
    An increasing body of literature from genome-wide association studies and human whole-genome sequencing highlights the identification of large numbers of candidate regulatory variants of potential therapeutic interest in numerous diseases. Our relatively poor understanding of the functions of non-coding genomic sequence, and the slow and laborious process of experimental validation of the functional significance of human regulatory variants, limits our ability to fully benefit from this information in our efforts to comprehend human disease. Humanized mouse models (HuMMs), in which human genes are introduced into the mouse, suggest an approach to this problem. In the past, HuMMs have been used successfully to study human disease variants; e.g., the complex genetic condition arising from Down syndrome, common monogenic disorders such as Huntington disease and β-thalassemia, and cancer susceptibility genes such as BRCA1. In this commentary, we highlight a novel method for high-throughput single-copy site-specific generation of HuMMs entitled High-throughput Human Genes on the X Chromosome (HuGX). This method can be applied to most human genes for which a bacterial artificial chromosome (BAC) construct can be derived and a mouse-null allele exists. This strategy comprises (1) the use of recombineering technology to create a human variant–harbouring BAC, (2) knock-in of this BAC into the mouse genome using Hprt docking technology, and (3) allele comparison by interspecies complementation. We demonstrate the throughput of the HuGX method by generating a series of seven different alleles for the human NR2E1 gene at Hprt. In future challenges, we consider the current limitations of experimental approaches and call for a concerted effort by the genetics community, for both human and mouse, to solve the challenge of the functional analysis of human regulatory variation

    A Microhomology-Mediated Break-Induced Replication Model for the Origin of Human Copy Number Variation

    Get PDF
    Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV). A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2–5 base pairs (bp). Third, endpoints occur near pre-existing low copy repeats (LCRs). Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR) for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR). Under these circumstances, single-strand 3′ tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication

    Resolution of synthetic Holliday structures by an extract of human cells.

    No full text
    Virtually all models for recombination between homologous DNA sequences invoke a branched intermediate known as a Holliday structure. The terminal steps of recombination are postulated to involve a specific cleavage through the four-way junction of a Holliday structure, in a process known as resolution. We have constructed a synthetic Holliday structure in which the position of the junction of the DNA duplexes can branch migrate through approximately 185 bp. Using this structure, we have found that a component of a cytoplasmic extract of Hela cells is capable of cleaving the central junction of the substrate in a manner consistent with resolution. The activity requires a divalent cation but does not require an exogenous energy source. This is the first reported resolution activity from a mammalian source
    • …
    corecore