5,727 research outputs found
Barrier Softening near the onset of Non-Activated Transport in Supercooled Liquids: Implications for Establishing Detailed Connection between Thermodynamic and Kinetic Anomalies in Supercooled Liquids
According to the Random First Order Transition (RFOT) theory of glasses, the
barriers for activated dynamics in supercooled liquids vanish as the
temperature of a viscous liquid approaches the dynamical transition temperature
from below. This occurs due to a decrease of the surface tension between local
meta-stable molecular arrangements much like at a spinodal. The dynamical
transition thus represents a crossover from the low activated bevavior to a
collisional transport regime at high . This barrier softening explains the
deviation of the relaxation times, as a function of temperature, from the
simple dependence at the high viscosity to a
mode-mode coupling dominated result at lower viscosity. By calculating the
barrier softening effects, the RFOT theory provides a {\em unified} microscopic
way to interpret structural relaxation data for many distinct classes of
structural glass formers over the measured temperature range. The theory also
provides an unambiguous procedure to determine the size of dynamically
cooperative regions in the presence of barrier renormalization effects using
the experimental temperature dependence of the relaxation times and the
configurational entropy data. We use the RFOT theory framework to discuss data
for tri-naphthyl benzene, salol, propanol and silica as representative systems.Comment: Submitted to J. Chem. Phy
Crystallization in a dense suspension of self-propelled particles
Using Brownian dynamics computer simulations we show that a two-dimensional
suspension of self-propelled ("active") colloidal particles crystallizes at
sufficiently high densities. Compared to the equilibrium freezing of passive
particles the freezing density is both significantly shifted and depends on the
structural or dynamical criterion employed. In non-equilibrium the transition
is accompanied by pronounced structural heterogeneities. This leads to a
transition region between liquid and solid in which the suspension is globally
ordered but unordered liquid-like "bubbles" still persist
A Criterion for the Critical Number of Fermions and Chiral Symmetry Breaking in Anisotropic QED(2+1)
By analyzing the strength of a photon-fermion coupling using basic scattering
processes we calculate the effect of a velocity anisotropy on the critical
number of fermions at which mass is dynamically generated in planar QED. This
gives a quantitative criterion which can be used to locate a quantum critical
point at which fermions are gapped and confined out of the physical spectrum in
a phase diagram of various condensed matter systems. We also discuss the
mechanism of relativity restoration within the symmetric, quantum-critical
phase of the theory.Comment: To appear in Physical Review
The calculation of molecular Eigen-frequencies
A method of determining molecular eigen-frequencies based on the function of Einstein expressing the variation of the atomic heat of various elements is proposed. It is shown that the same equation can be utilized to calculate both atomic heat and optically identifiably eigen-frequencies - at least to an order of magnitude - suggesting that in both cases the same oscillating structure is responsible
Effect of inelasticity on the phase transitions of a thin vibrated granular layer
We describe an experimental and computational investigation of the ordered
and disordered phases of a vibrating thin, dense granular layer composed of
identical metal spheres. We compare the results from spheres with different
amounts of inelasticity and show that inelasticity has a strong effect on the
phase diagram. We also report the melting of an ordered phase to a homogeneous
disordered liquid phase at high vibration amplitude or at large inelasticities.
Our results show that dissipation has a strong effect on ordering and that in
this system ordered phases are absent entirely in highly inelastic materials.Comment: 5 pages, 5 figures, published in Physical Review E. Title of first
version slightly change
Percolation of Immobile Domains in Supercooled Thin Polymeric Films
We present an analysis of heterogeneous dynamics in molecular dynamics
simulations of a thin polymeric film, supported by an absorbing structured
surface. Near the glass transition "immobile" domains occur throughout the
film, yet the probability of their occurrence decreasing with larger distance
from the surface. Still, enough immobile domains are located near the free
surface to cause them to percolate in the direction perpendicular to surface,
at a temperature near the glass transition temperature. This result is in
agreement with a recent theoretical model of glass transition
Feiras Internacionais de moda, a sua importância : como participar
Muitas são as questões por responder sobre a problemática da internacionalização das marcas de moda, este trabalho aborda apenas alguns destes conceitos, através das experiências de marcas de moda que expõem em feiras internacionais europeias, procura compreender quais os maiores desafios enfrentados na preparação para estes eventos.There are many unanswered questions about the issue of internationalization of fashion brands, this paper discusses only some of these concepts, through the experiences of fashion brands that exhibit at international fairs in Europe, sought to understand what the biggest challenges in preparing for these events
Observation of metastable hcp solid helium
We have produced and observed metastable solid helium-4 below its melting
pressure between 1.1 K and 1.4 K. This is achieved by an intense pressure wave
carefully focused inside a crystal of known orientation. An accurate density
map of the focal zone is provided by an optical interferometric technique.
Depending on the sample, minimum density achieved at focus corresponds to
pressures between 2 and 4 bar below the static melting pressure. Beyond, the
crystal undergoes an unexpected instability much earlier than the predicted
spinodal limit. This opens a novel opportunity to study this quantum crystal in
an expanded metastable state and its stability limits.Comment: deuxi\`eme versio
Free energies, vacancy concentrations and density distribution anisotropies in hard--sphere crystals: A combined density functional and simulation study
We perform a comparative study of the free energies and the density
distributions in hard sphere crystals using Monte Carlo simulations and density
functional theory (employing Fundamental Measure functionals). Using a recently
introduced technique (Schilling and Schmid, J. Chem. Phys 131, 231102 (2009))
we obtain crystal free energies to a high precision. The free energies from
Fundamental Measure theory are in good agreement with the simulation results
and demonstrate the applicability of these functionals to the treatment of
other problems involving crystallization. The agreement between FMT and
simulations on the level of the free energies is also reflected in the density
distributions around single lattice sites. Overall, the peak widths and
anisotropy signs for different lattice directions agree, however, it is found
that Fundamental Measure theory gives slightly narrower peaks with more
anisotropy than seen in the simulations. Among the three types of Fundamental
Measure functionals studied, only the White Bear II functional (Hansen-Goos and
Roth, J. Phys.: Condens. Matter 18, 8413 (2006)) exhibits sensible results for
the equilibrium vacancy concentration and a physical behavior of the chemical
potential in crystals constrained by a fixed vacancy concentration.Comment: 17 pages, submitted to Phys. Rev.
- …
