640 research outputs found

    Enhancing Hyperspectral Image Quality using Nonlinear PCA

    No full text
    International audienceIn this paper, we propose a new method aiming at reducing the noise in hyperspectral images. It is based on the nonlinear generalization of Principal Component Analysis (NLPCA). The NLPCA is performed by an auto associative neural network that have the hyperspectral image as input and is trained to reconstruct the same image at the output. Thanks to its bottleneck structure, the AANN forces the hyper spectral image to be projected in a lower dimensionality feature space where noise as well as both linear and nonlinear correlations between spectral bands are removed. This process permits to obtain enhancements in terms of hyperspectral image quality. Experiments are conducted on different real hyper spectral images, with different contexts and resolutions. The results are qualitatively and quantitatively discussed and demonstrate the interest of the proposed method as compared to traditional approaches

    Dual numbers and operational umbral methods

    Get PDF
    Dual numbers and their higher-order version are important tools for numerical computations, and in particular for finite difference calculus. Based on the relevant algebraic rules and matrix realizations of dual numbers, we present a novel point of view, embedding dual numbers within a formalism reminiscent of operational umbral calculus

    Assessing the impact of Laurentide Ice Sheet topography on glacial climate

    Get PDF
    Simulations of past climates require altered boundary conditions to account for known shifts in the Earth system. For the Last Glacial Maximum (LGM) and subsequent deglaciation, the existence of large Northern Hemisphere ice sheets caused profound changes in surface topography and albedo. While ice-sheet extent is fairly well known, numerous conflicting reconstructions of ice-sheet topography suggest that precision in this boundary condition is lacking. Here we use a high-resolution and oxygen-isotope-enabled fully coupled global circulation model (GCM) (GISS ModelE2-R), along with two different reconstructions of the Laurentide Ice Sheet (LIS) that provide maximum and minimum estimates of LIS elevation, to assess the range of climate variability in response to uncertainty in this boundary condition. We present this comparison at two equilibrium time slices: the LGM, when differences in ice-sheet topography are maximized, and 14 ka, when differences in maximum ice-sheet height are smaller but still exist. Overall, we find significant differences in the climate response to LIS topography, with the larger LIS resulting in enhanced Atlantic Meridional Overturning Circulation and warmer surface air temperatures, particularly over northeastern Asia and the North Pacific. These up- and downstream effects are associated with differences in the development of planetary waves in the upper atmosphere, with the larger LIS resulting in a weaker trough over northeastern Asia that leads to the warmer temperatures and decreased albedo from snow and sea-ice cover. Differences between the 14 ka simulations are similar in spatial extent but smaller in magnitude, suggesting that climate is responding primarily to the larger difference in maximum LIS elevation in the LGM simulations. These results suggest that such uncertainty in ice-sheet boundary conditions alone may significantly impact the results of paleoclimate simulations and their ability to successfully simulate past climates, with implications for estimating climate sensitivity to greenhouse gas forcing utilizing past climate states

    Operational methods in the study of Sobolev-Jacobi polynomials

    Get PDF
    Inspired by ideas from umbral calculus and based on the two types of integrals occurring in the defining equations for the gamma and the reciprocal gamma functions, respectively, we develop a multi-variate version of umbral calculus and of the so-called umbral image technique. Besides providing a class of new formulae for generalized hypergeometric functions and an implementation of series manipulations for computing lacunary generating functions, our main application of these techniques is the study of Sobolev-Jacobi polynomials. Motivated by applications to theoretical chemistry, we moreover present a deep link between generalized normal-ordering techniques introduced by Gurappa and Panigrahi, two-variable Hermite polynomials and our integral-based series transforms. Notably, we thus calculate all K-tuple L-shifted lacunary exponential generating functions for a certain family of Sobolev-Jacobi (SJ) polynomials explicitly

    Discovering geothermal supercritical fluids: a new frontier for seismic exploration

    Get PDF
    Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation

    Symptomatic Isolated Pleural Effusion as an Atypical Presentation of Ovarian Hyperstimulation Syndrome

    Get PDF
    Ovarian hyperstimulation syndrome (OHSS) presents in ~33% of ovarian stimulation cycles with clinical manifestations varying from mild to severe. Its pathogenesis is unknown. Pleural effusion is reported in ~10% of severe OHSS cases and is usually associated with marked ascites. The isolated finding of pleural effusions without ascites, as the main presenting symptom of OHSS is not frequently reported and its pathogenesis is also unknown. We describe two unusual cases of OHSS where dyspnea secondary to unilateral pleural effusion was the only presenting symptom. By reporting our experience, we would like to heighten physicians' awareness in detecting these cases early, as it is our belief that the incidence of pleural effusion in the absence of most commonly recognized risk factors for OHSS may be underestimated and may significantly compromise the health of the patient if treatment is not initiated in a reasonable amount of time

    Repeat pneumococcal polysaccharide vaccination does not impair functional immune responses among Indigenous Australians.

    Get PDF
    Indigenous Australians experience one of the highest rates of pneumococcal disease globally. In the Northern Territory of Australia, a unique government-funded vaccination schedule for Indigenous Australian adults comprising multiple lifetime doses of the pneumococcal polysaccharide vaccine is currently implemented. Despite this programme, rates of pneumococcal disease do not appear to be declining, with concerns raised over the potential for immune hyporesponse associated with the use of this vaccine. We undertook a study to examine the immunogenicity and immune function of a single and repeat pneumococcal polysaccharide vaccination among Indigenous adults compared to non-Indigenous adults. Our results found that immune function, as measured by opsonophagocytic and memory B-cell responses, were similar between the Indigenous groups but lower for some serotypes in comparison with the non-Indigenous group. This is the first study to document the immunogenicity following repeat 23-valent pneumococcal polysaccharide vaccine administration among Indigenous Australian adults, and reinforces the continued need for optimal pneumococcal vaccination programmes among high-risk populations

    Endurance training damages small airway epithelium in mice.

    Get PDF
    RATIONALE: In athletes, airway inflammatory cells were found to be increased in induced sputum or bronchial biopsies. Most data were obtained after exposure to cold and dry air at rest or during exercise. Whether training affects epithelial and inflammatory cells in small airways is unknown. OBJECTIVES: To test whether endurance training under standard environmental conditions causes epithelial damage and inflammation in the small airways of mice. METHODS AND MEASUREMENTS: Formalin-fixed, paraffin-embedded lung sections were obtained in sedentary (n = 14) and endurance-trained (n = 16) Swiss mice at baseline and after 15, 30, and 45 days of training. The following variables were assessed (morphometry and immunohistochemistry) in small airways (basement membrane length < 1 mm): (1) integrity, proliferation, and apoptosis of bronchiolar epithelium; and (2) infiltration, activation, and apoptosis of inflammatory cells. MAIN RESULTS: Compared with sedentary mice, bronchiolar epithelium of trained mice showed progressive loss of ciliated cells, slightly increased thickness, unchanged goblet cell number and appearance, and increased apoptosis and proliferation (proliferating cell nuclear antigen) (p < 0.001 for all variables). Leukocytes (CD45(+) cells) infiltrated airway walls (p < 0.0001) and accumulated within the lumen (p < 0.001); however, apoptosis of CD45(+) cells did not differ between trained and sedentary mice. Nuclear factor-kappaB translocation and inhibitor-alpha of NF-kappaB (IkappaBalpha) phosphorylation were not increased in trained compared with sedentary mice. CONCLUSIONS: Bronchiolar epithelium showed damage and repair associated with endurance training. Training increased inflammatory cells in small airways, but inflammatory activation was not increased. These changes may represent an adaptive response to increased ventilation during exercise

    A loess–paleosol record of climate and glacial history over the past two glacial–interglacial cycles (~150 ka), southern Jackson Hole, Wyoming

    Get PDF
    Loess accumulated on a Bull Lake outwash terrace of Marine Oxygen Isotope Stage 6 (MIS 6) age in southern Jackson Hole, Wyoming. The 9 m section displays eight intervals of loess deposition (Loess 1 to Loess 8, oldest), each followed by soil development. Our age-depth model is constrained by thermoluminescence, meteoric 10Be accumulation in soils, and cosmogenic 10Be surface exposure ages. We use particle size, geochemical, mineral-magnetic, and clay mineralogical data to interpret loess sources and pedogenesis. Deposition of MIS 6 loess was followed by a tripartite soil/thin loess complex (Soils 8, 7, and 6) apparently re!ecting the large climatic oscillations of MIS 5. Soil 8 (MIS 5e) shows the strongest development. Loess 5 accumulated during a glacial interval (~76–69 ka; MIS 4) followed by soil development under conditions wetter and probably colder than present. Deposition of thick Loess 3 (~43–51 ka, MIS 3) was followed by soil development comparable with that observed in Soil 1. Loess 1 (MIS 2) accumulated during the Pinedale glaciation and was followed by development of Soil 1 under a semiarid climate. This record of alternating loess deposition and soil development is compatible with the history of Yellowstone vegetation and the glacial !our record from the Sierra Nevada
    corecore