15 research outputs found

    Alterations in plasma soluble vascular endothelial growth factor receptor-1 (sFlt-1) concentrations during coronary artery bypass graft surgery: relationships with post-operative complications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plasma concentrations of sFlt-1, the soluble form of the vascular endothelial growth factor receptor (VEGF), markedly increase during coronary artery bypass graft (CABG) surgery with extracorporeal circulation (ECC). We investigated if plasma sFlt-1 values might be related to the occurrence of surgical complications after CABG.</p> <p>Methods</p> <p>Plasma samples were collected from the radial artery catheter before vascular cannulation and after opening the chest, at the end of ECC just before clamp release, after cross release, after weaning from ECC, at the 6<sup>th </sup>and 24<sup>th </sup>post-operative hour. Thirty one patients were investigated. The presence of cardiovascular, haematological and respiratory dysfunctions was prospectively assessed. Plasma sFlt-1 levels were measured with commercially ELISA kits.</p> <p>Results</p> <p>Among the 31 investigated patients, 15 had uneventful surgery. Patients with and without complications had similar pre-operative plasma sFlt-1 levels. Lowered plasma sFlt-1 levels were observed at the end of ECC in patients with haematological (p = 0.001, ANOVA) or cardiovascular (p = 0.006) impairments, but not with respiratory ones (p = 0.053), as compared to patients with uneventful surgery.</p> <p>Conclusion</p> <p>These results identify an association between specific post-CABG complication and the lower release of sFlt-1 during ECC. sFlt-1-induced VEGF neutralisation might, thus, be beneficial to reduce the development of post-operative adverse effects after CABG.</p

    Release of soluble vascular endothelial growth factor receptor-1 (sFlt-1) during coronary artery bypass surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was conducted to follow plasma concentrations of sFlt-1 and sKDR, two soluble forms of the vascular endothelial growth factor (VEGF) receptor in patients undergoing coronary artery bypass graft (CABG) surgery with extracorporeal circulation (ECC).</p> <p>Methods</p> <p>Plasma samples were obtained before, during and after surgery in 15 patients scheduled to undergo CABG. Levels of sFlt-1 and KDR levels were investigated using specific ELISA.</p> <p>Results</p> <p>A 75-fold increase of sFlt-1 was found during cardiac surgery, sFlt-1 levels returning to pre-operative values at the 6<sup>th </sup>post-operative hour. In contrast sKDR levels did not change during surgery. The ECC-derived sFlt-1 was functional as judge by its inhibitory effect on the VEGF mitogenic response in human umbilical vein endothelial cells (HUVECs). Kinetic experiments revealed sFlt-1 release immediately after the beginning of ECC suggesting a proteolysis of its membrane form (mFlt-1) rather than an elevated transcription/translation process. Flow cytometry analysis highlighted no effect of ECC on the shedding of mFlt-1 on platelets and leukocytes suggesting vascular endothelial cell as a putative cell source for the ECC-derived sFlt-1.</p> <p>Conclusion</p> <p>sFlt-1 is released during CABG with ECC. It might be suggested that sFlt-1 production, by neutralizing VEGF and/or by inactivating membrane-bound Flt-1 and KDR receptors, might play a role in the occurrence of post-CABG complication.</p

    Comparative study of enteric viruses, coliphages and indicator bacteria for evaluating water quality in a tropical high-altitude system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteria used as indicators for pathogenic microorganisms in water are not considered adequate as enteric virus indicators. Surface water from a tropical high-altitude system located in Mexico City that receives rainwater, treated and non-treated wastewater used for irrigation, and groundwater used for drinking, was studied.</p> <p>Methods</p> <p>The presence of enterovirus, rotavirus, astrovirus, coliphage, coliform bacteria, and enterococci was determined during annual cycles in 2001 and 2002. Enteric viruses in concentrated water samples were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Coliphages were detected using the double agar layer method. Bacteria analyses of the water samples were carried out by membrane filtration.</p> <p>Results</p> <p>The presence of viruses and bacteria in the water used for irrigation showed no relationship between current bacterial indicator detection and viral presence. Coliphages showed strong association with indicator bacteria and enterovirus, but weak association with other enteric viruses. Enterovirus and rotavirus showed significant seasonal differences in water used for irrigation, although this was not clear for astrovirus.</p> <p>Conclusion</p> <p>Coliphages proved to be adequate faecal pollution indicators for the irrigation water studied. Viral presence in this tropical high-altitude system showed a similar trend to data previously reported for temperate zones.</p

    Shiga Toxin and Lipopolysaccharide Induce Platelet-Leukocyte Aggregates and Tissue Factor Release, a Thrombotic Mechanism in Hemolytic Uremic Syndrome

    Get PDF
    BACKGROUND: Aggregates formed between leukocytes and platelets in the circulation lead to release of tissue factor (TF)-bearing microparticles contributing to a prothrombotic state. As enterohemorrhagic Escherichia coli (EHEC) may cause hemolytic uremic syndrome (HUS), in which microthrombi cause tissue damage, this study investigated whether the interaction between blood cells and EHEC virulence factors Shiga toxin (Stx) and lipopolysaccharide (LPS) led to release of TF. METHODOLOGY/PRINCIPAL FINDINGS: The interaction between Stx or LPS and blood cells induced platelet-leukocyte aggregate formation and tissue factor (TF) release, as detected by flow cytometry in whole blood. O157LPS was more potent than other LPS serotypes. Aggregates formed mainly between monocytes and platelets and less so between neutrophils and platelets. Stimulated blood cells in complex expressed activation markers, and microparticles were released. Microparticles originated mainly from platelets and monocytes and expressed TF. TF-expressing microparticles, and functional TF in plasma, increased when blood cells were simultaneously exposed to the EHEC virulence factors and high shear stress. Stx and LPS in combination had a more pronounced effect on platelet-monocyte aggregate formation, and TF expression on these aggregates, than each virulence factor alone. Whole blood and plasma from HUS patients (n = 4) were analyzed. All patients had an increase in leukocyte-platelet aggregates, mainly between monocytes and platelets, on which TF was expressed during the acute phase of disease. Patients also exhibited an increase in microparticles, mainly originating from platelets and monocytes, bearing surface-bound TF, and functional TF was detected in their plasma. Blood cell aggregates, microparticles, and TF decreased upon recovery. CONCLUSIONS/SIGNIFICANCE: By triggering TF release in the circulation, Stx and LPS can induce a prothrombotic state contributing to the pathogenesis of HUS

    Peptide Brush Polymers and Nanoparticles with Enzyme-Regulated Structure and Charge for Inducing or Evading Macrophage Cell Uptake

    No full text
    Cellular uptake by macrophages and ensuing clearance by the mononuclear phagocyte system stands as a significant biological barrier for nanoparticle therapeutics. While there is a growing body of work investigating the design principles essential for imparting nanomaterials with long-circulating characteristics and macrophage evasion, there is still a widespread need for examining stimuli-responsive systems, particularly well-characterized soft materials, which differ in their physiochemical properties prior to and after an applied stimulus. In this work, we describe the synthesis and formulation of polymeric nanoparticles (NPs) and soluble homopolymers (Ps) encoded with multiple copies of a peptide substrate for proteases. We examined the macrophage cell uptake of these materials, which vary in their peptide charge and conjugation (<i>via</i> the N- or C-terminus). Following treatment with a model protease, thermolysin, the NPs and Ps undergo changes in their morphology and charge. After proteolysis, zwitterionic NPs showed significant cellular uptake, with the C-terminus NP displaying higher internalization than its N-terminus analogue. Enzyme-cleaved homopolymers generally avoided assembly and uptake, though at higher concentrations, enzyme-cleaved N-terminus homopolymers assembled into discrete cylindrical structures, whereas C-terminus homopolymers remained dispersed. Overall, these studies highlight that maintaining control over NP and polymer design parameters can lead to well-defined biological responses

    Ratiometric Fluorescence Detection of Mercury Ions in Water by Conjugated Polymer Nanoparticles

    No full text
    We present dye-doped polymer nanoparticles that are able to detect mercury in aqueous solution at parts per billion levels via fluorescence resonance energy transfer (FRET). The nanoparticles are prepared by reprecipitation of highly fluorescent conjugated polymers in water and are stable in aqueous suspension. They are doped with rhodamine spirolactam dyes that are nonfluorescent until they encounter mercury ions, which promote an irreversible reaction that converts the dyes to fluorescent rhodamines. The rhodamine dyes act as FRET acceptors for the fluorescent nanoparticles, and the ratio of nanoparticle-to-rhodamine fluorescence intensities functions as a ratiometric fluorescence chemodosimeter for mercury. The light harvesting capability of the conjugated polymer nanoparticles enhances the fluorescence intensity of the rhodamine dyes by a factor of 10, enabling sensitive detection of mercury ions in water at levels as low as 0.7 parts per billion
    corecore