210 research outputs found

    Two-photon excitation selective plane illumination microscopy (2PE-SPIM) of highly scattering samples: Characterization and application

    Get PDF
    In this work we report the advantages provided by two photon excitation (2PE) implemented in a selective plane illumination microscopy (SPIM) when imaging thick scattering samples. In particular, a detailed analysis of the effects induced on the real light sheet excitation intensity distribution is performed. The comparison between single-photon and twophoton excitation profiles shows the reduction of the scattering effects and sample-induced aberrations provided by 2PE-SPIM. Furthermore, uniformity of the excitation distribution and the consequent improved image contrast is shown when imaging scattering phantom samples in depth by 2PE-SPIM. These results show the advantages of 2PE-SPIM and suggest how this combination can further enhance the SPIM performance. Phantom samples have been designed with optical properties compatible with biological applications of interest. © 2013 Optical Society of America

    Emotional imagination of negative situations: Functional neuroimaging in anorexia and bulimia

    Get PDF
    AimThe present study aims to extend the knowledge of the neural correlates of emotion processing in first episode subjects affected by anorexia nervosa (AN) or bulimia nervosa (BN). We applied an emotional distress paradigm targeting negative emotions thought to be relevant for interpersonal difficulties and therapeutic resistance mechanisms.MethodsThe current study applied to 44 female participants with newly diagnosed AN or BN and 20 matched controls a neuroimaging paradigm eliciting affective responses. The measurements also included an extensive assessment comprising clinical scales, neuropsychological tests, measures of emotion processing and empathy.ResultsAN and BN did not differ from controls in terms of emotional response, emotion matching, self-reported empathy and cognitive performance. However, eating disorder and psychopathological clinical scores, as well as alexithymia levels, were increased in AN and BN. On a neural level, no significant group differences emerged, even when focusing on a region of interest selected a priori: the amygdala. Some interesting findings put in relation the hippocampal activity with the level of Body Dissatisfaction of the participants, the relative importance of the key nodes for the common network in the decoding of different emotions (BN = right amygdala, AN = anterior cingulate area), and the qualitative profile of the deactivations.ConclusionsOur data do not support the hypothesis that participants with AN or BN display reduced emotional responsiveness. However, peculiar characteristics in emotion processing could be associated to the three different groups. Therefore, relational difficulties in eating disorders, as well as therapeutic resistance, could be not secondary to a simple difficulty in feeling and identifying basic negative emotions in AN and BN participants

    Reduced resting-state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa.

    Get PDF
    Background: Alterations in the resting-state functional connectivity (rs-FC) of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN). The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. Methods: Sixteen medication-free women with BN (age = 23 ± 5 years) and 18 matched controls (age = 23 ± 3 years) underwent a functional magnetic resonance resting-state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. Results: Bulimia nervosa patients showed a decreased rs-FC both within the somatosensory network (t = 9.0, df = 1, P = 0.005) and with posterior cingulate cortex and two visual areas (the right middle occipital gyrus and the right cuneus) (P = 0.05 corrected for multiple comparison). The rs-FC of the left paracentral lobule with the right middle occipital gyrus correlated with psychopathology measures like bulimia (r = −0.4; P = 0.02) and interoceptive awareness (r = −0.4; P = 0.01). Analyses were conducted using age, BMI (body mass index), and depressive symptoms as covariates. Conclusion: Our findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area (EBA). The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size

    Effect of compressive loading on chondrocyte differentiation in agarose cultures of chick limb-bud cells

    Full text link
    It is well established that mechanical loading is important to homeostasis of cartilage tissue, and growing evidence suggests that it influences cartilage differentiation as well. Whereas the effect of mechanical forces on chondrocyte biosynthesis and gene expression has been vigorously investigated, the effect of the mechanical environment on chondrocyte differentiation has received little attention. The long-term objective of this research is to investigate the regulatory role of mechanical loading in cell differentiation. The goal of this study was to determine if mechanical compression could modulate chondrocyte differentiation in vitro. Stage 23/24 chick limb-bud cells, embedded in agarose gel, were subjected to either static (constant 4.5-k Pa stress) or cyclic (9.0-kPa peak stress at 0.33 Hz) loading in unconfined compression during the initial phase of commitment to a phenotypic lineage. Compared with nonloaded controls, cyclic compressive loading roughly doubled the number of cartilage nodules and the amount of sulfate incorporation on day 8, whereas static compression had little effect on these two measures. Neither compression protocol significantly affected overall cell viability or the proliferation of cells within nodules. Since limb-bud mesenchymal cells were seeded directly into agarose, an assessment of cartilage nodules in the agarose reflects the proportion of the original cells that had given rise to chondrocytes. Thus, the results indicate that about twice as many mesenchymal cells were induced to enter the chondrogenic pathway by cyclic mechanical compression. The coincidence of the increase in sulfate incorporation and nodule density indicates that the primary effect of mechanical compression on mesenchymal cells was on cellular differentiation and not on their subsequent metabolism. Further studies are needed to identify the primary chondrogenic signal associated with cyclic compressive loading and to determine the mechanism by which it influences commitment to or progression through the chondrogenic lineage, or both.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34917/1/1100180112_ftp.pd

    Tendinopathy—from basic science to treatment

    Get PDF
    Chronic tendon pathology (tendinopathy), although common, is difficult to treat. Tendons possess a highly organized fibrillar matrix, consisting of type I collagen and various 'minor' collagens, proteoglycans and glycoproteins. The tendon matrix is maintained by the resident tenocytes, and there is evidence of a continuous process of matrix remodeling, although the rate of turnover varies at different sites. A change in remodeling activity is associated with the onset of tendinopathy. Major molecular changes include increased expression of type III collagen, fibronectin, tenascin C, aggrecan and biglycan. These changes are consistent with repair, but they might also be an adaptive response to changes in mechanical loading. Repeated minor strain is thought to be the major precipitating factor in tendinopathy, although further work is required to determine whether it is mechanical overstimulation or understimulation that leads to the change in tenocyte activity. Metalloproteinase enzymes have an important role in the tendon matrix, being responsible for the degradation of collagen and proteoglycan in both healthy patients and those with disease. Metalloproteinases that show increased expression in painful tendinopathy include ADAM (a disintegrin and metalloproteinase)-12 and MMP (matrix metalloproteinase)-23. The role of these enzymes in tendon pathology is unknown, and further work is required to identify novel and specific molecular targets for therapy

    SARS-CoV-2 infection induces DNA damage, through CHK1 degradation and impaired 53BP1 recruitment, and cellular senescence

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although SARS-CoV-2 was reported to alter several cellular pathways, its impact on DNA integrity and the mechanisms involved remain unknown. Here we show that SARS-CoV-2 causes DNA damage and elicits an altered DNA damage response. Mechanistically, SARS-CoV-2 proteins ORF6 and NSP13 cause degradation of the DNA damage response kinase CHK1 through proteasome and autophagy, respectively. CHK1 loss leads to deoxynucleoside triphosphate (dNTP) shortage, causing impaired S-phase progression, DNA damage, pro-inflammatory pathways activation and cellular senescence. Supplementation of deoxynucleosides reduces that. Furthermore, SARS-CoV-2 N-protein impairs 53BP1 focal recruitment by interfering with damage-induced long non-coding RNAs, thus reducing DNA repair. Key observations are recapitulated in SARS-CoV-2-infected mice and patients with COVID-19. We propose that SARS-CoV-2, by boosting ribonucleoside triphosphate levels to promote its replication at the expense of dNTPs and by hijacking damage-induced long non-coding RNAs’ biology, threatens genome integrity and causes altered DNA damage response activation, induction of inflammation and cellular senescence

    Insecticide susceptibility status of Phlebotomus (Paraphlebotomus) sergenti and Phlebotomus (Phlebotomus) papatasi in endemic foci of cutaneous leishmaniasis in Morocco

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Morocco, cutaneous leishmaniasis is transmitted by <it>Phlebotomus sergenti </it>and <it>Ph. papatasi</it>. Vector control is mainly based on environmental management but indoor residual spraying with synthetic pyrethroids is applied in many foci of <it>Leishmania tropica</it>. However, the levels and distribution of sandfly susceptibility to insecticides currently used has not been studied yet. Hence, this study was undertaken to establish the susceptibility status of <it>Ph. sergenti </it>and <it>Ph. papatasi </it>to lambdacyhalothrin, DDT and malathion.</p> <p>Methods</p> <p>The insecticide susceptibility status of <it>Ph. sergenti </it>and <it>Ph. papatasi </it>was assessed during 2011, following the standard WHO technique based on discriminating dosage. A series of twenty-five susceptibility tests were carried out on wild populations of <it>Ph. sergenti </it>and <it>Ph. papatasi </it>collected by CDC light traps from seven villages in six different provinces. Knockdown rates (KDT) were noted at 5 min intervals during the exposure to DDT and to lambdacyhalothrin. After one hour of exposure, sandflies were transferred to the observation tubes for 24 hours. After this period, mortality rate was calculated. Data were analyzed by Probit analysis program to determine the knockdown time 50% and 90% (KDT50 and KDT90) values.</p> <p>Results</p> <p>Study results showed that <it>Ph.sergenti </it>and <it>Ph. papatasi </it>were susceptible to all insecticides tested. Comparison of KDT values showed a clear difference between the insecticide knockdown effect in studied villages. This effect was lower in areas subject to high selective public health insecticide pressure in the framework of malaria or leishmaniasis control.</p> <p>Conclusion</p> <p><it>Phlebotomus sergenti </it>and <it>Ph. papatasi </it>are susceptible to the insecticides tested in the seven studied villages but they showed a low knockdown effect in Azilal, Chichaoua and Settat. Therefore, a study of insecticide susceptibility of these vectors in other foci of leishmaniasis is recommended and the level of their susceptibility should be regularly monitored.</p
    corecore