52 research outputs found

    A scalable mass customisation design process for 3D-printed respirator mask to combat COVID-19

    Get PDF
    Purpose A three-dimensional (3D) printed custom-fit respirator mask has been proposed as a promising solution to alleviate mask-related injuries and supply shortages during COVID-19. However, creating a custom-fit computer-aided design (CAD) model for each mask is currently a manual process and thereby not scalable for a pandemic crisis. This paper aims to develop a novel design process to reduce overall design cost and time, thus enabling the mass customisation of 3D printed respirator masks. Design/methodology/approach Four data acquisition methods were used to collect 3D facial data from five volunteers. Geometric accuracy, equipment cost and acquisition time of each method were evaluated to identify the most suitable acquisition method for a pandemic crisis. Subsequently, a novel three-step design process was developed and scripted to generate respirator mask CAD models for each volunteer. Computational time was evaluated and geometric accuracy of the masks was evaluated via one-sided Hausdorff distance. Findings Respirator masks were successfully generated from all meshes, taking <2 min/mask for meshes of 50,000∼100,000 vertices and <4 min for meshes of ∼500,000 vertices. The average geometric accuracy of the mask ranged from 0.3 mm to 1.35 mm, depending on the acquisition method. The average geometric accuracy of mesh obtained from different acquisition methods ranged from 0.56 mm to 1.35 mm. A smartphone with a depth sensor was found to be the most appropriate acquisition method. Originality/value A novel and scalable mass customisation design process was presented, which can automatically generate CAD models of custom-fit respirator masks in a few minutes from a raw 3D facial mesh. Four acquisition methods, including the use of a statistical shape model, a smartphone with a depth sensor, a light stage and a structured light scanner were compared; one method was recommended for use in a pandemic crisis considering equipment cost, acquisition time and geometric accuracy

    Biopolitics meets Terrapolitics: Political Ontologies and Governance in Settler-Colonial Australia

    Get PDF
    Crises persist in Australian Indigenous affairs because current policy approaches do not address the intersection of Indigenous and European political worlds. This paper responds to this challenge by providing a heuristic device for delineating Settler and Indigenous Australian political ontologies and considering their interaction. It first evokes Settler and Aboriginal ontologies as respectively biopolitical (focused through life) and terrapolitical (focused through land). These ideal types help to identify important differences that inform current governance challenges. The paper discusses the entwinement of these traditions as a story of biopolitical dominance wherein Aboriginal people are governed as an “included-exclusion” within the Australian political community. Despite the overall pattern of dominance, this same entwinement offers possibilities for exchange between biopolitics and terrapolitics, and hence for breaking the recurrent crises of Indigenous affairs

    AvatarMe: realistically renderable 3D facial reconstruction "in-the-wild"

    Get PDF
    Over the last years, with the advent of Generative Adversarial Networks (GANs), many face analysis tasks have accomplished astounding performance, with applications including, but not limited to, face generation and 3D face reconstruction from a single "in-the-wild" image. Nevertheless, to the best of our knowledge, there is no method which can produce high-resolution photorealistic 3D faces from "in-the-wild" images and this can be attributed to the: (a) scarcity of available data for training, and (b) lack of robust methodologies that can successfully be applied on very high-resolution data. In this paper, we introduce AvatarMe, the first method that is able to reconstruct photorealistic 3D faces from a single "in-the-wild" image with an increasing level of detail. To achieve this, we capture a large dataset of facial shape and reflectance and build on a state-of-the-art 3D texture and shape reconstruction method and successively refine its results, while generating the per-pixel diffuse and specular components that are required for realistic rendering. As we demonstrate in a series of qualitative and quantitative experiments, AvatarMe outperforms the existing arts by a significant margin and reconstructs authentic, 4K by 6K-resolution 3D faces from a single low-resolution image that, for the first time, bridges the uncanny valley

    Variational prototype learning for deep face recognition

    No full text
    Deep face recognition has achieved remarkable improvements due to the introduction of margin-based softmax loss, in which the prototype stored in the last linear layer represents the center of each class. In these methods, training samples are enforced to be close to positive prototypes and far apart from negative prototypes by a clear margin. However, we argue that prototype learning only employs sample-to-prototype comparisons without considering sample-to-sample comparisons during training and the low loss value gives us an illusion of perfect feature embedding, impeding the further exploration of SGD. To this end, we propose Variational Prototype Learning (VPL), which represents every class as a distribution instead of a point in the latent space. By identifying the slow feature drift phenomenon, we directly inject memorized features into prototypes to approximate variational prototype sampling. The proposed VPL can simulate sample-to-sample comparisons within the classification framework, encouraging the SGD solver to be more exploratory, while boosting performance. Moreover, VPL is conceptually simple, easy to implement, computationally efficient and memory saving. We present extensive experimental results on popular benchmarks, which demonstrate the superiority of the proposed VPL method over the state-of-the-art competitors

    Practical and scalable desktop-based high-quality facial capture

    Get PDF
    We present a novel desktop-based system for high-quality facial capture including geometry and facial appearance. The proposed acquisition system is highly practical and scalable, consisting purely of commodity components. The setup consists of a set of displays for con- trolled illumination for reflectance capture, in conjunction with multi- view acquisition of facial geometry. We additionally present a novel set of modulated binary illumination patterns for efficient acquisition of re- flectance and photometric normals using our setup, with diffuse-specular separation. We demonstrate high-quality results with two different vari- ants of the capture setup – one entirely consisting of portable mobile devices targeting static facial capture, and the other consisting of desk- top LCD displays targeting both static and dynamic facial capture

    Kartogrifa In-Flux

    No full text
    corecore