18 research outputs found

    Effects of small pulsed nanocurrents on cell viability in vitro and in vivo: implications for biomedical electrodes

    Full text link
    Using a custom-built, implantable pulse generator, we studied the effects of small pulsed currents on the viability on rat aortic-derived cells (RAOC) in vitro. The pulsed currents (0.37A/m(2)) underwent apoptosis within 24h as shown by the positive staining for cleaved caspase-3 and classically apoptotic morphology. Based on these findings, we examined the effects of nanocurrents in vivo. The pulse generator was implanted subcutaneously in the rat model. The electrode|tissue interface histology revealed no difference between the active platinum surface and the neighboring control surface, however we found a large difference between electrodes that were functional during the entire experiment and non-active electrodes. These non-active electrodes showed an increase in impedance at higher frequencies 21 days post-implantation, whereas working electrodes retained their impedance value for the entire experiment. These results indicate that applied currents can reduce the impedance of implanted electrodes
    corecore