33 research outputs found

    Entropy generation in 2+1-dimensional Gravity

    Full text link
    The tunneling approach, for entropy generation in quantum gravity, is shown to be valid when applied to 3-D general relativity. The entropy of de Sitter and Reissner-Nordstr\"om external event horizons and of the 3-D black hole obtained by Ba\~nados et. al. is rederived from tunneling of the metric to these spacetimes. The analysis for spacetimes with an external horizon is carried out in a complete analogy with the 4-D case. However, we find significant differences for the black hole. In particular the initial configuration that tunnels to a 3-D black hole may not to yield an infinitely degenerate object, as in 4-D Schwarzschild black hole. We discuss the possible relation to the evaporation of the 3-D black hole.Comment: 22 pages, Tex, TAUP-2102-9

    Almost Ideal Clocks in Quantum Cosmology: A Brief Derivation of Time

    Get PDF
    A formalism for quantizing time reparametrization invariant dynamics is considered and applied to systems which contain an `almost ideal clock.' Previously, this formalism was successfully applied to the Bianchi models and, while it contains no fundamental notion of `time' or `evolution,' the approach does contain a notion of correlations. Using correlations with the almost ideal clock to introduce a notion of time, the work below derives the complete formalism of external time quantum mechanics. The limit of an ideal clock is found to be closely associated with the Klein-Gordon inner product and the Newton-Wigner formalism and, in addition, this limit is shown to fail for a clock that measures metric-defined proper time near a singularity in Bianchi models.Comment: 16 pages ReVTeX (35 preprint pages

    Does loop quantum cosmology replace the big rip singularity by a non-singular bounce?

    Full text link
    It is stated that holonomy corrections in loop quantum cosmology introduce a modification in Friedmann's equation which prevent the big rip singularity. Recently in \cite{h12} it has been proved that this modified Friedmann equation is obtained in an inconsistent way, what means that the results deduced from it, in particular the big rip singularity avoidance, are not justified. The problem is that holonomy corrections modify the gravitational part of the Hamiltonian of the system leading, after Legendre's transformation, to a non covariant Lagrangian which is in contradiction with one of the main principles of General Relativity. A more consistent way to deal with the big rip singularity avoidance is to disregard modification in the gravitational part of the Hamiltonian, and only consider inverse volume effects \cite{bo02a}. In this case we will see that, not like the big bang singularity, the big rip singularity survives in loop quantum cosmology. Another way to deal with the big rip avoidance is to take into account geometric quantum effects given by the the Wheeler-De Witt equation. In that case, even though the wave packets spread, the expectation values satisfy the same equations as their classical analogues. Then, following the viewpoint adopted in loop quantum cosmology, one can conclude that the big rip singularity survives when one takes into account these quantum effects. However, the spreading of the wave packets prevents the recover of the semiclassical time, and thus, one might conclude that the classical evolution of the universe come to and end before the big rip is reached. This is not conclusive because. as we will see, it always exists other external times that allows us to define the classical and quantum evolution of the universe up to the big rip singularity.Comment: Accepted for publication in JCA

    Tomographic entropy and cosmology

    Get PDF
    The probability representation of quantum mechanics including propagators and tomograms of quantum states of the universe and its application to quantum gravity and cosmology are reviewed. The minisuperspaces modeled by oscillator, free pointlike particle and repulsive oscillator are considered. The notion of tomographic entropy and its properties are used to find some inequalities for the tomographic probability determining the quantum state of the universe. The sense of the inequality as a lower bound for the entropy is clarified.Comment: 19 page

    The Problem of Time and Quantum Black Holes

    Full text link
    We discuss the derivation of the so-called semi-classical equations for both mini-superspace and dilaton gravity. We find that there is no systematic derivation of a semi-classical theory in which quantum mechanics is formulated in a space-time that is a solution of Einstein's equation, with the expectation value of the matter stress tensor on the right-hand side. The issues involved are related to the well-known problems associated with the interpretation of the Wheeler-deWitt equation in quantum gravity, including the problem of time. We explore the de Broglie-Bohm interpretation of quantum mechanics (and field theory) as a way of spontaneously breaking general covariance, and thereby giving meaning to the equations that many authors have been using to analyze black hole evaporation. We comment on the implications for the ``information loss" problem.Comment: 30 pages, COLO-HEP-33

    Quantum Gravity and Turning Points in the Semiclassical Approximation

    Get PDF
    The wavefunctional in quantum gravity gives an amplitude for 3-geometries and matter fields. The four-space is usually recovered in a semiclassical approximation where the gravity variables are taken to oscillate rapidly compared to matter variables; this recovers the Schrodinger evolution for the matter. We examine turning points in the gravity variables where this approximation appears to be troublesome. We investigate the effect of such a turning point on the matter wavefunction, in simple quantum mechanical models and in a closed minisuperspace cosmology. We find that after evolving sufficiently far from the turning point the matter wavefunction recovers to a form close to that predicted by the semiclassical approximation, and we compute the leading correction (from `backreaction') in a simple model. We also show how turning points can appear in the gravitational sector in dilaton gravity. We give some remarks on the behavior of the wavefunctional in the vicinity of turning points in the context of dilaton gravity black holes.Comment: 32 pages, 3 Postscript figures, uses epsf.tex and fps.sty, some discussion, references and Acknowledgements added, version to appear in Phys. Rev.

    Particle creation in a tunneling universe

    Get PDF
    An expanding closed universe filled with radiation can either recollapse or tunnel to the regime of unbounded expansion, if the cosmological constant is nonzero. We re-examine the question of particle creation during tunneling, with the purpose of resolving a long-standing controversy. Using a perturbative superspace model with a conformally coupled massless scalar field, which is known to give no particle production, we explicitly show that the breakdown of the semiclassical approximation and the ``catastrophic particle production'' claimed earlier in the literature are due to an inappropriate choice of the initial quantum state prior to the tunneling.Comment: 21 pages, 3 embedded figures, RevTeX

    Quantum geometrodynamics: whence, whither?

    Full text link
    Quantum geometrodynamics is canonical quantum gravity with the three-metric as the configuration variable. Its central equation is the Wheeler--DeWitt equation. Here I give an overview of the status of this approach. The issues discussed include the problem of time, the relation to the covariant theory, the semiclassical approximation as well as applications to black holes and cosmology. I conclude that quantum geometrodynamics is still a viable approach and provides insights into both the conceptual and technical aspects of quantum gravity.Comment: 25 pages; invited contribution for the Proceedings of the seminar "Quantum Gravity: Challenges and Perspectives", Bad Honnef, Germany, April 200

    Topology, Decoherence, and Semiclassical Gravity

    Full text link
    We address the issue of recovering the time-dependent Schr\"{o}dinger equation from quantum gravity in a natural way. To reach this aim it is necessary to understand the nonoccurrence of certain superpositions in quantum gravity. We explore various possible explanations and their relation. These are the delocalisation of interference terms through interaction with irrelevant degrees of freedom (decoherence), gravitational anomalies, and the possibility of θ\theta states. The discussion is carried out in both the geometrodynamical and connection representation of canonical quantum gravity.Comment: 18 pages, ZU-TH 3/93, to appear in Phys. Rev.

    Breakdown of the semiclassical approximation at the black hole horizon

    Get PDF
    The definition of matter states on spacelike hypersurfaces of a 1+1 dimensional black hole spacetime is considered. The effect of small quantum fluctuations of the mass of the black hole due to the quantum nature of the infalling matter is taken into account. It is then shown that the usual approximation of treating the gravitational field as a classical background on which matter is quantized, breaks down near the black hole horizon. Specifically, on any hypersurface that captures both infalling matter near the horizon and Hawking radiation, quantum fluctuations in the background geometry become important, and a semiclassical calculation is inconsistent. An estimate of the size of correlations between the matter and gravity states shows that they are so strong that a fluctuation in the black hole mass of order exp[-M/M_{Planck}] produces a macroscopic change in the matter state.Comment: Latex, 31 pages + 5 uuencoded figure
    corecore