23 research outputs found

    Perturbation theory in light-cone quantization

    Get PDF
    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory

    Precision Upsilon Spectroscopy from Nonrelativistic Lattice QCD

    Full text link
    The spectrum of the Upsilon system is investigated using the Nonrelativistic Lattice QCD approach to heavy quarks and ignoring light quark vacuum polarization. We find good agreement with experiment for the Upsilon(1S), Upsilon(2S), Upsilon(3S) and for the center of mass and fine structure of the chi_b states. The lattice calculations predict b-bbar D-states with center of mass at (10.20 +/- 0.07 +/- 0.03)GeV. Fitting procedures aimed at extracting both ground and excited state energies are developed. We calculate a nonperturbative dispersion mass for the Upsilon(1S) and compare with tadpole-improved lattice perturbation theory.Comment: 8 pages, latex, SCRI-94-57, OHSTPY-HEP-T-94-00

    Nonperturbative Light-Front QCD

    Full text link
    In this work the determination of low-energy bound states in Quantum Chromodynamics is recast so that it is linked to a weak-coupling problem. This allows one to approach the solution with the same techniques which solve Quantum Electrodynamics: namely, a combination of weak-coupling diagrams and many-body quantum mechanics. The key to eliminating necessarily nonperturbative effects is the use of a bare Hamiltonian in which quarks and gluons have nonzero constituent masses rather than the zero masses of the current picture. The use of constituent masses cuts off the growth of the running coupling constant and makes it possible that the running coupling never leaves the perturbative domain. For stabilization purposes an artificial potential is added to the Hamiltonian, but with a coefficient that vanishes at the physical value of the coupling constant. The weak-coupling approach potentially reconciles the simplicity of the Constituent Quark Model with the complexities of Quantum Chromodynamics. The penalty for achieving this perturbative picture is the necessity of formulating the dynamics of QCD in light-front coordinates and of dealing with the complexities of renormalization which such a formulation entails. We describe the renormalization process first using a qualitative phase space cell analysis, and we then set up a precise similarity renormalization scheme with cutoffs on constituent momenta and exhibit calculations to second order. We outline further computations that remain to be carried out. There is an initial nonperturbative but nonrelativistic calculation of the hadronic masses that determines the artificial potential, with binding energies required to be fourth order in the coupling as in QED. Next there is a calculation of the leading radiative corrections to these masses, which requires our renormalization program. Then the real struggle of finding the right extensions to perturbation theory to study the strong-coupling behavior of bound states can begin.Comment: 56 pages (REVTEX), Report OSU-NT-94-28. (figures not included, available via anaonymous ftp from pacific.mps.ohio-state.edu in subdirectory pub/infolight/qcd

    Light Front Quantization

    Full text link
    An introductory overview on Light-Front quantization, with some emphasis on recent achievements, is given. Light-Front quantization is the most promising and physical tool to study deep inelastic scattering on the basis of quark gluon degrees of freedom. The simplified vacuum structure (nontrivial vacuum effects can only appear in zero-mode degrees of freedom) and the physical basis allows for a description of hadrons that stays close to intuition. Recent progress has ben made in understanding the connection between effective LF Hamiltonians and nontrivial vacuum condesates. Discrete Light-Cone Quantization, the transverse lattice and Light-Front Tamm-Dancoff (in combination with renormalization group techniques) are the main tools for exploring LF-Hamiltonians nonperturbatively.Comment: LATEX, 87 pages, postscript files for the figures or a postscript file for the complete article (900 kB) available from the autho

    High-Dimensional Derivatives

    No full text
    corecore