Figure

Figure 6.5 Two-loop rainbow self-energy contribution to o — ff.

ém, 6®)m denote the one- and two-loop self-energy mass

correction, respectively. I corresponds to a countert-
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1. Introduction

Perhaps the most outstanding problem in quantum field theory is to compute the

. bound state spectrum and relativistic wavefunctions of hadrons at strong coupling.
In quantum chromodynamics (QCD) one needs a practical computational method

which not only determines the hadronic spectra, but also provides nonperturbative

hadronic matrix elements.

Lattice gauge theory, in which the Feynman path integral is evaluated on a
discrete spacetime grid, provides an appropriate tool for such calculations. For strong
coupling, it leads to an appealing description of confinement. Numerical results in
general have, at least qualitatively, been consistent with experiment, and there is

little doubt their accuracy will improve with increasing computing power.

" Nevertheless, it is necessary to develop other methods which are perhiaps more
: intuitive and less time consuming than the Jattice gauge theory approach. In addi-
tion, it is particularly important to compute the relativistic wavefunctions needed to
calculate structure functions, form factors and other hadronic matrix elements. A
step in this directién has been undertaken by a method known as Discrete Light-Cone
Quantization (DLCQ). So far, the theory has been applied mainly to the elucidation
of quantum field theories in one space and one time dimension. In 1+1 dimensional
QCD, for example, the full spectra and wavefunctions could be obtained, using the
DLCQ method [1]. These results, which required only a minimal numerical effort,
are in agreement with other calculations when available. The success of DLCQ, as
well as a similar approach, known as Light-front Tamm-Dancofl method (2], provide

the hope for solving field theories in 341 dimensions.

However, the transition to dimensions higher than 1+1 is anything but straight-

forward. Some of the reasons are the following:

|
|
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o Theories in 141 dimensions, quantized on the light-cone, are manifestly co-
variant. This is because the operator of boost transformations, which is a
kinematic Poincare operator in light-cone quantization, is the only generator
of continuous Lorentz transformations, This is generally not the case in higher .

dimensional field theories, since the underlying Poincare group includes certain

rotation operators, which are dynamical in the light-cone formulation. Thus,
the recovery of Lorentz invariant physical observables is a nontrivial problem
in light-cone quantized theories beyond 141 dimensions (as for any form of
Hamilton dynamics) [3].

o The Hamiltonian formulation of gauge theories in 141 dimensions is effectively
gauge invariant [4]. However, in higher dimensions the regularization imposed
in such a formalism will generally spoil gauge invariance, since the gauge field
quanta become a dynamical degree of freedom of the theory. Unless a careful
regularization is imposed, gauge invariant amplitudes are not recovered in the
continuum limit.

e Simple theories like the Yukawa model or gauge theories in 141 dimensions are
superrenormalizable. In 3+1 dimensions, however, a renormalization scheme
to all orders in the coupling constant and masses must be imposed for these

theories in order to ensure a consistent treatment of their short distance be-

havior.

¢ The number of degrees of freedom in 341 dimensional theories is drastically

enhanced compared to the 141 dimensional world.

Thus, a thorough investigation of light-cone properties which are characteris- .
tic for higher dimensions is very important. The easiest way of addressing these
issues is by analysing the perturbative structure of light-cone field theories first.
Perturbative studies cannot be substituted for an analysis of problems related to a

nonperturbative approach. However, in order to lay down groundwork for upcoming
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nonperturbative studies, it is indispensable to validate the renormalization methods
at the perturbative level, i.e., to gain control over the perturbative treatment first. A
clear understanding of divergences in perturbation theory, as well as their numerical
treatment, is a necessary first step towards formulating such a program.

The first objective of this dissertation is to clarify this issue, at least in second
and fourth-order in perturbation theory. The work in this dissertation can provide

guidance for the choice of counterterms in DLCQ or the Tamm-Dancoff approach,

A second objective of this work is the study of light-cone perturbation theory
(LCPTh) as a competitive tool for conducting perturbative Feynman diagram cal-
culations. Feynman perturbation theory has become the most practical tool for
computing cross sections in high energy physics and other physical properties of field
theory. Although this standard covariant method has been applied to a great range
of problems, computations beyond one-loop corrections are very difficult. A number
of examples of two-loop and higher calculations using Feynman methods are given

in Ref. [5].

Because of ihe algebraic complexity of the Feynman calculations in higher-order
perturbation theory, it is desirable to automatize Feynmran diagram calculations so
that algebraic manipulation programs can carry out almost the entire calculation.
This thesis presents a step in this direction. The technique we are elaborating on
here is known as light-cone perturbation theory (LCPTh) [6-8].

LCPTh is similar £0 ordinary time-ordered perturbation theory, familiar in both
nonrelativistic quantum mechanics and quantum field theory, where each time-ordered

. amplitude is constructed from a product of energy denominators and interaction ver-
tices. The covariant Feynman amplitude is, in principle, obtained from the sum of
time-ordered noncovariant graphs with the same topology. Instead of ordinary time,
the LCPTh evolution parameter is the time along the light-cone 7 =t — z/c¢ . The

T — ordered amplitudes are each invariant under a large class of Lorentz boosts, so

1
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that each r—ordered amplitude is itself frame-independent with respect to those

symmetries.

A straightforward way of relating the LOPTh amplitudes to the Feynman rules
is by changing variables of the independent loop momenta &k in a Feynman integral

according to (9, 10]

fd% - -;- /dk,mmdk-

with k% = k® £ k®, and performing the integration over A=, The residues give
the LCPTh amplitudes. Alternatively, these amplitudes can be obtained directly
from the Hamiltonian formalism derived at fixed 7. Thus by constructing LCPTh
directly, only a three dimensional integral has to be performed for each loop. Since
the complex contour integrations over energy or £~ do not occur, the formalism is
immediately suitable for numerical treatment. |

The price to pay for the simple features of LCPTh is that every Feynman dia-
gram with n vertices gets decomposed into a set of light-cone time-ordered diagrams.
However, unlike time-ordered perturbation theory (which can be obtained after per-
forming the k° integration of the independent loop momenta), the number of light-
cone time-orderings corresponding to the Feynman amplitude is considerably smaller
than n! For example, in the case of the fourth-order (a/7)? correction to the elec-
tron’s anomalous moment ( without vacuum polarization ), there are 516 individual
time-ordered contributions, but only 8 of them are nonvanishing in the light-cone

formalism. This example will be discussed further in the following sections.

There are a number of other advantages of the light-cone perturbation theory
formalism.
e Since each amplitude describes the propagation of on-mass-shell particles with

a specific time-ordering, the physical meaning of each LCPTh amplitude is
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immediate. General properties such as unitarity and cluster decomposition

theorems become explicit.

e If one quantizes in a physical gauge, all intermediate states correspond to the
propagation of physical particles with positive metric. The physical variables
used to describe jets or particles in high energy physics have an immediate

interpretation in terms of the LC variables.

o The cancellation of infrared divergences is immediate and can be carried out

for contributions with the same LC time-ordering.

o The LC quantization of quantum chromodynamics leads to a direct physical
interpretation of the theory. The implementation of current algebra becomes
essentially a kinemalic problem [11-13]. The current matrix elements J¥
needed to compute form factors and structure functions can be written as
diagonal matrix elements of the light-cone wavefunctions, since such curreuts
do not couple to vacuum fluctuations in the LC quantized theory (13, 14].

This thesis is organized as follows :

e Chapter 1 gives an introduction.

o Chapter 2 lists light-cone perturbation theory rules.

o Chapter 3 presents a new algorithm for the automatic computation of Feynman
diagram amplitudes. Once the topology of a diagram is defined, the algorithm
constructs all corresponding light-cone time-orderings. We explore the method

for two- and three-loop calculations in QED. This chapter lays down the com-

putational techniques used in the thesis.

o Chapter 4 discusses an ultraviolet regularization and renormalization procedure
of light-cone perturbation theory, which is suitable for numerical application.
In this sense, Chapter 4 augments the discussion of Chapter 3. The fourth-order

correction to the anomalous magnetic moment of the clectron is computed i
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light-cone gauge. Several regularizations of the associated gauge singularity are
explored. Local counterterms are constructed to remove the quadratic light-
cone divel‘gei'lc,ces from the formalism. Problems of the Discrete L‘ig]anom-
Quantization (DLCQ) and the light-front Tamm-Dancofl approach, beyond
the one photon exchange, are also described.

o Chapter 5 elaborates upon the problems of Chapter 4 in the context of non- .
perturbative methods, such as DLCQ. The light-cone Hamiltonian for Q£ Doy
consistent with covariant and gauge-invariant perturbation theory is constructed.
Extension to gauge theories in 3+1 physical dimensions is also described.

o Chapter 6 investigales specific features of a perturbation expansion in light-
cone field thebry. The decay of a heavy scalar particle at rest, in the Yukawa
model, at the one- and two-loop level, is studied. It is shown explicitly that
naive light-cone quantization leads to a violation of rotational invariance. Non-
covariant counterterms are constructed in detail to restore Lorentz covariance.
An analysis of surface and zero mode contributions clarifies the origin of the
problem.

o Chapter 7 summarizes this work and outlines possible future work in this field.
It may be used as a expanded abstract of the thesis.

This thesis is structured such that each chapter can be read mostly independently
from other chapters. The advantage is that the reader, whose interest in this work
is focused on LCPTh as a competitive tool for standard Feynman diagram calcula-
tions, needs to concentrate mainly on Chapters 2, 3 and 4. Those interested in the
consequences of this work for applications in DLCQ should focus on Chapter 5 (and
the last subsection of Chapter 4). For those interested in the results of this thesis in
general the focus during the first reading should be on Chapters 3 and 6. .

Chapters 3, 4, 5 and 6 of this thesis have been ecither published, accepted or

submitted for publication [15].
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2. Light-Cone Perturbation Theory Rules

In this section we present light-cone perturbation theory rules which are adopted

from Ref. [1]. The light-cone Green's functions are the probability amplitudes that a

state starting in Fock state [i) ends up in Fock state |f) a (light-cone) time 7 later (3]
(F11) G(fyis7) = ([l HeeT/2 i)

(2.1)
de
—_ e=ier/2 ‘|
2/27r G(f,13¢) (T1F)

where Fourier transform G(f,4;¢€) can be written

Ny 1 ;
1 1 1
= V 2.2
<f l( — Hy + 104 + ¢ — Hy+ 104 ¢ — Hy-+i04 (2:2)
1 1 |
. 4 — | 7))
t e—H()+10+‘ ¢ - Hy+104 ¢ = o404 r ‘z>

Hpe and Hy denote the full and free Hamiltonian respectively, The rules for 7-
ordered perturbation theory follow immediately when (¢ — 11g)

Uis replaced by its
spectral decomposition

Z/H d?'kl,' [ ki Ay) (e Ay A
€~ H(J + 10.{

020 o . 2.3
l()7r2 kP oe— (kT + m?)/kF + 104 (2:)

The sum becomes a sum over all states n intermediate between two interactions.

l'o calculate G(f,1;¢€) perturbatively then, all r-ordered diagrams must be con

sidered, the contribution from each graph computed according to the following rules

1. Assign a momentum k* to each line such that the total &+ kp are conserved
[
at each vertex, and such that & =m~, i.e

o kT o= (R mE) T

o

Include a factor @(k™) for cach line.
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3. For each gluon (photon) line include a factor dfﬁ)/}\:'* where dy, is the (gauge
dependent) polarization sum, In Feynman gauge dy, equals —g,,. In light-
cone gauge 7+ A = AT =

&) = S ik, Neu(k, )

A=1,2
:’_’ﬂkl} + 1 ku

= "9 nk

)

where k¢ = 7.k = 0. For a regularization of the gauge singularity at n A =0
(see Refs. [4-6]).

4. The gluon (photon)-fermion vertex is

cov"
The trigluon vertex is
—eo (P~ )" + (¢ = k)" + (k = p)"g""]
and the four-gluon vertex is

2(}/1pquo' _ guagup)_

Generally there are three independent ways of inserting the four-gluon vertex;
all must be included.

5. Tor each intermediate state there is a factor

1
Ziuc k= — therm k™ + e

where the sums in the “energy denominators” are over the light-cone “energics,”

k=, of the incident (inc) and intermediate (interm) particles.

10
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6. In Feynman gauge, ghosts loops occur. For each ghost line include a factor
—[@(kT)]/kt. The gluon-ghost vertex is egk”.

7. The fermion propagator consists of two parts:

e A propagating piece

1 1
Sk m), o=k em)

where the first and second term correspond the propagation of a fermion and

antifermion, respectively.

e An instantaneous contribution

7+

2kt
Also the gluon (photon) propagator in light-cone gange has an instantaneous part

(#n¥)/k*?, as does the ghost propagator. In each case, the instantancous propa-

gator can be absorbed into the regular propagator by replacing A, the momentum

associated with the line, by

!

k= k) k"~§:\. k™ k
dine ~ {nierimn

in the numerator of those diagrams in which the fermion, gluon (photon), or ghost
propagates only over a single time interval. Here 37, . denotes summation over all
initial particles in the diagram, while Z’m,crm denotes summation over all particles
in the intermediate state other than the particle of interest. Thus, in light-cone
gauge, k replaces k in the polarization sum dfﬁ), as well as in the trigluon coupling,

for gluons appearing in a single intermediate state. Similarly, & A + m is replaced

by &k +m [1].
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8. Integrate [ dktd?k /1673 over each independent k.

9. Include a factor —1 for each closed fermion loop, for each fermion line that
both begins and ends in the initial state (i.e., T...u), and for each diagram

in which fermion lines are interchanged in either of the initial or final states. -

10. A particular useful spinor basis is given by

. _ 1 '+ —t - /\'(T) /‘\ *_‘:T .
U(L’)\)”—M\/F (k + Am + u_L-kJ_) W) A=l (2.4)

. _ 1__ + m _-—;) " \(l) A :1 ;
1(1\_,,/\).“-—-—\/]:.._;. (A. fm 4+ @ | l\l) o A= (2.5)

where \(1) = 1/v2(1,0,1,0) and x(}) = 1/v2(0,1,0, =1)7,
11. Color factors are computed as for covariant diagrams.

As an example we compute the magnetic formfactor 1 associated with the

decay of a heavy top quark (t) into a massless bottom quark (b) and a W-boson, via

t — bW

to second-order in perturbation theory. In the limit of zero b mass the current

associated with this process is given by

I* = (YF PRy +10™ g, PplYyy, + ¢" PrC) bHWT,

where the projection operators Ppj = (1/2)(1 + ~9), the formfactors Fyp, I, C

and the annihilation operators b,¢, W have been introduced.

12

LR IR BT R TR TR S TR AR LR E TR [ gy NN TN T LRI A T N TR T [ I v e



woe PO L T (S TR PRI TR . YN R [ W Cone T W I .

t} fr\M% b + &
X

P1Y, P2 B

\ \
\W \W

9-91 TO09A18

Figure 2.1. One-loop contribution to the decay ¢ — bW.

In order to extract Fyy it is convenient to consider the helicity-flip amplitude of

the corresponding I't current
<[ Tt [t>= [=(f + 2 Far + (5 = pD)CT (D7), (2.6)

where p; = (pf,py,pi,1) and py = (pb’*',pb',pb'L) denote the four-momentum of ¢
(with mass m ) and b respectively. The Lh.s. of Eq. (2.6) can be computed in

LCPTh, yielding two light-cone time-orderings shown in Fig. 2.1. Hence,

< aypy, L) 1T Jwi(pe, 1) >=

o0
e / Thudkt G(ﬁ &)
31 ko —EO0F - 4
0
ay(1)y" 1627 (p1+m )'7/1“1 1)
24 Tk,
(7 — = p“ — )y - Bt - ) i (2.7)

o0
3 ;2 C) k+— +
i e / kydk* 7 i)
3167 ) (R — ) (pF — )

("= po)y TP m) (1)

- pé n pi _L+m P +m?

(py —pp — e —"'"r' )(P'*—';]r—”fi‘)Jrif

where the four-vectors are given by py = (pf — kT, p; — ]\fi//(t+,;)f|l — k) pe =

(pf =kt py — k3 JkF po s —ky),pr = (pf —kF, [(pes ki) +m?)(piF = kY),pL—

—
o
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b1)de = (K = pfopr = By = (o, = RO(BT = k%), kL = pps) and the factor
4/3 includes color. Here, the momenta py, py, & correspond to t,b and the virtual
gluon respectively. The computation of the r.h.s. of of Eq. (2.7) for two different
choices of the momentumn p; (note that (p; —py)? = m.%,v, where my is the W-boson
mass) enables the extraction of Fyy, in Eq. (2.6). For m/mw = 150.0/80.9 we find
Fyp(m¥y) = (0.49 £ 0.001)(a,/2T).

Equation (2) in combination with Eq. (3) has the remarkable feature that they
immediately lead to a practical prescription for the calculation of general scattering
amplitudes in perturbation theory:

e Approximate the Hilbert space by a finite number of Fock states,

e Compute all matrix elements < k{|V |k; >, between those Fock states |hy .

o Connect initial and final state, insert the corresponding energy-denominators

and sum over all intermediate states.

e Self-energy contributions can be identified by Fock states which occur more
than once in the expansion. Thus, an appropriate mass subtraction seems pos-
sible. Wavefunction renormalization is not necessary since 1. (2) corresponds
to the summation of all Feynman diagrams to this order in perturbation theory.
Hence, all wavefunction counterterms cancel by means of the Ward identities.
Charge renormalization can be carried out by identifying vacuum polarization
diagrams [8].

Unfortunately, a direct numerical application of those steps is often extremely
inefficient, since most of the Fock states, generally, do not connect initial and final
states. In addition, ultraviolet regularization, by means of a Fock space truncation,
poses extra problems. Nevertheless, due to the fact that the expansion in lIiq. (2) s
manifestly unitary, i.e., causal, an efficient modification of the above procedure can
be constructed for the automated computation of scattering amplitudes in perturba-

tion theory.
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3. Perturbation Theory in Light-Cone Quantization
3.1 A general algorithm for generating LCPTh

In this section we develop a procedure which automatically constructs all light-
cone time-orderings associated with a given Feynman diagram I'. The only input
required is the set of photon connections of F (first photon (4,1), second photon (5,2)

in Fig. 3.1], which define the topology of the diagram.

7-91 6983A1

Figure 3.1. Two-loop QED cross diagram. The momenta p; and k; correspond to
thie internal momenta of the i-th fermion and j-th photon, respectively.

In the first part of this section we outline the procedure for quantum electrody-
namics in the specific example of Fig. 3.1. In the remainder of the section a general
algorithm, useful for higher loop calculations, is described.

First we shall review the derivation of LCPTh rules introduced by Soper [2].
The Feynman answer F for the two-loop contribution to the electromagnetic vertex

v*(q) + el_(p]) — e{(pp) corresponding to Fig. 3.1 is given by [1,7]

F =t /d%ld“mzd'*:cgd“af,;d"ms@—(ifs,T)’)‘“

. . Femtem , 3.1
x iSp(es — 24y iSp(zg — ﬂfs)l‘er 1Sp(ay —aa)y’ (1)
)

X 7.'51"‘(3"2 - 331))7p\1!(3:13 J) 'Z.'Df“,/\p('l‘fl - 1’1)1‘1)17,/“/(‘7'5 -2,
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where p} denotes the incoming light-cone momentum of the electron. Here we have
chosen the helicity-flip amplitude (pr|J*/pf|ps) and the frame with ¢* = 0 which
is appropriate for obtaining the anomalous magnetic moment of the electron and
its Pauli form factor Fy(¢?) [8]. The Feynman propagator can be written in the

convenient form [3]

“‘—( P+ m)e im+@( B (=p+m) ‘“)

o0
+ ,
NETPRNEY PR e
T P
0

= 5M(2) + 57)(2) + S (2)

(3.2)
where the electron four-vector is on the mass shell i.c. p™ = (m* + ]) )/pt. This
result follows from

Sp(a) = (104" + m)Ap(x) (3.3)

and
~1 2 Oodp+ 4y —ipr apr
AF(H’)=T/dm/F(@(f Je P 4 O(—aF)eM ),
0

The third term in Eq. (3.2) gives rise to an instantaneous fermion interaction in light-

cone quantized QED. The photon propagator in light-cone gauge - A = AT = 0 is

given by
lA
Dyy(z ¢ ,zkz(.)(w )+ RO (— )Z(, (ky AN ew (R A)
A
| T S
/dzkl/dlﬂLé o)’ 6,L+5HA___),*'(%“1 ~kyxry)

= D\ () + D) (2) + DIn*t(a)
(3.4)
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where

k »
Z fr‘(k’}\)f"(k’)‘) = —gGuv + M%M .
A=1,2

This result can be obtained by performing the k™ integration of

1 —ik _‘-g «
[)“,,(:1?) = mj-‘i"/dlikf‘ ‘km'};‘-é*-_i-‘—l-;?z. (35)

The external field ¥; for the incident electron is given by
U(x) = up(p, s)e”*P'® (3.6)

where uj(p,s) is the solution of the free Dirac equation. In Feynman gauge the
polarization sum 3 ) _; 5 € (k, A)eu(k,A) in (3.4) gets replaced by —gu and the in-
stantaneous contribution drops out.

In order to compute the scattering amplitude, Eq. (3.1), using light-cone per-
turbation theory, one first has to split up the integration region into all possible
time-orderings. For illustration purposes we pick a typical time-ordering 714305

at;r < :1f4+ < af < afgr < ¢§” (3.7)

and obtain the contribution

Fir) o= et [ dizidiaydiesdizydias
(14325)

x O(zf —2z)0(af —af)O(x} — af)O(2f —~ 2f) TP (e, 1)

&

o+ —inT e i (F
X Hp )(:rg —x1)(yPe™ P u(pg, 1)) zD(Fi\)p(m‘; — :1‘,1)71)(1;,,1)“(:1:5 —x9) .
(3.8)
The corresponding 7-ordered diagram is shown in Fig. 3.2. Note that the instanta-

neous contributions in Sp(zq — 23) and Sp(ry — x2) do not contribute because of

18
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Figure 3.2. Light-cone time-ordering contributing to the cross diagram.

v+t = 0. The instantaneous contribution of Sp(z2 — x1) gives zero result in this

case due to

In the same way it is shown that the instantancous contribution of Sp(as — 4) van-
ishes. In general, instantaneous interactions give rise to a nonzero contribution only
if they do not extend over more than one intermediate state for the same reason [9]

. Equation (3.8) leads to a phase factor of the form

exp{i [ppzs — pa(as — z4) + pa(zs — 23) + palay — a2)

—quy — p1{zg — 1) — prry — ki (24 — 1) = ka5 — w2)]}
The momenta pj, k; denote the momentum associated with the i-th fermion and the
j-th photon line respectively. The momenta pr, pp corresponds to the initial and final

momentum respectively. The integration over z, a7 can be performed trivially and

demonstrates momentum conservation of pf,pf‘ at each vertex.
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In order to perform the :r;" integration, it is convenient to change variables ac-

cording to [2]

At = I Ty
A o= ~af
(3.10)
Ay =i —af
)\j' = 'ch - :rj .
The light-cone time part of (3.9) becomes
exp} A (b7 = k7 —pF) +i0 (=pz =T = pF +7F)
+iXf (=p5 = p7 = ps +Pp—a7)
(3.11)

+ N (=hT = pT + 05 —¢7) + 12t (—=p7 =47 + %)

=exp § [{Cr(r1ass) + iat (=p] — ¢~ +p7)]

This will play an important role in our discussion, so we have introduced the definition

-

of a characteristic exponent Cp(7) of a time-ordering 7. The integral over a7 can be

performed trivially and gives overall light-cone energy conservation. The remaining

integrals over :1:,jL can be performed by means of
o0 .
dT et H+OT —
H 4 1e
0

The product of these denominators, and the factors [—i/(27)*](1/p*) from (3.2) and
(3.4) then lead to the LCPTh answer of the time-ordering (3.7).

As far as the treatment of instantaneous diagrams is concerned, a simple sub-
stitution allows the incorporation of instantaneous vertices [9]. To see this, consider

the 4t contribution of one fermion line to an arbitrary Feynman diagram

U
Fe ZLB__F_{JF_ (3.12)
ptd— = 2pt
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where d~ = p; —p~ — Espec p; is the light-cone denominator containing the fermion
line under consideration. In general, p7 is given by the total light-cone encrgy of
the incoming particles and the sum runs over all spectators of the corresponding

intermediate state.

The second term in Eq. (3.12) presents the instantaneous contribution to /. If

we define Penergy—shell =P~ + d™, both terms combine to

Lotp-
27 Pencrgy—shell

F=. e

. (3.13)

Note that pg ey shel is the light-cone energy one would obtain if one required light-
cone energy conservation at the vertex. Thus all instantancous fermion contributions
can be taken into account by putting those p~ on energy-shell in the numerator
whenever that fermion does not extend over more than one intermediate state [9]. In
the same way the light-cone gauge photon interaction in (3.4) can be handled [4],
Now we are ready to describe our general as a sequence of 10 steps (see Ilig. 3.3).
For illustration we again consider the order e® contribution to the electron vertex,
We start out noting that each two-loop 7-ordered contribution to the electron vertex

(which contains no vacuum polarization contribution [10]) is of the form

1?(7.1""17:5) =

et /(iki*dzkldk;dekg e(pheEho(om)

(16792 | prpfpfplkiad d=(1)d=(2)d=(3)d~(4)

% (ﬁ7“(“)(84i)4 + 77‘1')’71l(i2)(‘5‘1lf’:s + )"0 (s py )y
x (s1py + 77?')7“("“)U> Dynyu) (k1) Dpgayusy (k)

(3.14)
where the diagram is defined by its photon connections. The explicit construction of
(3.14) is done as follows:

e Step (I): the indices 1,73, ...,75 are specified, For the diagram of Fig. 3.1 we
have 1 = 5,1y = 2,13 = +,14 = 4,75 = 1. For the diagram of Fig. 3.4 we have
11 = 5,19 = 4,13 = 2,14 = 4,15 = 1.
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"‘f’“* 1 ‘ Construct the energy denominators
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N0
|
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more than one Intarmediate state? (VIIi) §

Selem a tlme——orderlng B
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........................................................

- m +p2 m?q-p2
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Construct the Characterlstio Exponefitial E P o P --5;;.—+ (Ins)
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CrgsE Afd™ () ‘M A A A datermine s} = £1  (IX)

Extract d™(i)& solve the sat of linear equations §
d= (1) =0 UM (84, 84) ad

BrEegk g & (1).d (@) (TerT )2

. V)
d™ (4) =0

ulate and Integrate (X)

and construct

=B (Kys Ky PP = B (K Ky p)
as a function of the Indepandent loop momenta §
and axternal momenta ‘

Does Cg(1) contain &
(V1) vacuum fluctuatinn? @ E Stop I
L

Figure 3.3. Flow chart for the automatic computation of QED amplitudes.

LAY
GUBIAT

e Step (I1): For each of the n! = 120 time-orderings one defines a vector 7(1),¢ =
1,.,n = 5. 7(I) describes the position of the [-th vertex of I'. In the example
of Fig. 3.1 we get 7(1) = 1,7(2) = 2,7(3) = 3,7(4) = 4,7(5) = 5. In the
example of Fig, 3.2 we get 7(1) = 1,7(2) =4,7(3) = 3,7(4) = 2,7(H) = 5. It

,is also useful to define

Alr(1) =1 . (3.15)
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Figure 3.4. Two-loop “corner” diagram.

o Step (I1I): Once a time-ordering is defined we know which picces out of the

propagators (3.2) and (3.4) are to be picked. The construction of Cp(7) de-
fined in (3.11) is straightforward. Note that the term which describes overall

momentum conservation must be subtracted in order to obtain C'p(7).

o Step (1V): one changes variables to \[ = ;z';t“ - 1lt for A = 1,..,4 and

expresses the characteristic exponential in terms of Ay

Cp(r) = Z ATd= (i)

{ y
e Step (V): In general 5! different time-orderings can contribute to I, However,
in practice most of them vanish, This is due to the fact that all light-cone
momenta are greater or equal zero and conserved at cacli vertex [11]. An
example is given in Fig. 3.5, which contains a vacuum fluctuation at wq. A
vacuum fluctuation at x; can be formally identified when all terms of d7 (1)

carry the same coeflicient (namely, +1, or —1). The d7(7) can be obtained

from C'p(7) by setting Ag = 04,
e Step (V1): To obtain the form Eq. (3.14) all momenta p and p must be
expressed in terms of the independent foop momenta and external momenta,

This can be achieved by solving the equations
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Figure 3.5. Example for a vacuum fluctuation to the cross diagram.

i
d”(2)=0 ,
| (3.16)
il d(3)=0 |,
.‘ (1—(4) =0
For example, for Fig. 3.2 we find
pf = p} - K mL=prL— ki
‘ P'j = }"i+ + k:;r - 7’?, ) poL =kig 4+ ko —pro
(3.17)
| Pf;ﬁ = k,j + k1+ - P_; ) pat = koy + kil —pry

pf = —kf+pk , par= ke 4 pey

e Step (VII): The expressions for the internal fermion momenta, obtained in
step (VI), are substituted into d(7) in order to construct all energy denomi-

nators d™ (1) explicitly.

e ORI -

1 T B ————



e Step (VII): When setting up the fermion p;7 in the numerator it must be
decided whether the fermion line p; extends over more than ofie inlermediate

state. A formal criteria for that is given by

abs(A() — A(i+1)) =1, (3.18)

If (3.18) is correct, p; is sel on energy shell, which means
Py = Pi,mass—shell T d™ (ins) (3.19)

where ins 1= min(A(7 + 1), AG)), pT ooy = (% + p2) /i 11 (3.18) is not
i,mass—shell i i

fulfilled we have p;" = pice—shell

e Step (IX). The only variables which are left to be determined in (3.14) are the
signs s; which define whether a fermion or antifermion propagates. The phase
can be determined from

Alxigr) — Axy)

o . 3.20
"7 abs (A(vigy) — A(ay) ( )

o Step (X): (3.14) can now be calculated. If necessary, the diagram can be
regularized using Pauli-Villars regularization. |

It should be noted that step 2 to step 10 can be readily carried out automat-

ically, using an algebraic manipulation program like REDUCIL The algorithm can

be generalized easily to higher loops. As an example, in Fig. 3.6 we present the

time-orderings, generated by the algorithm, to a three-loop contribution of the clec-

tromagnetic vertex for g% = 0.

25

o Wt " T TR IRCRRTERNTI e oaypo ] noor "o vyp oy v IR L T T T U



8-91 6983A8

Pigure 3.6. Example for a set of light-cone time-orderings which correspond to a
sixth order Feynman diagram.
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3.2 Numerical results

In this section we report on the use of the general LCPTh algorithm to redo
the two-loop calculation of the anomalous magnetic moment (g — 2)/2 = a = [%(0)
by Petermann and Sommerfield [12,13]. Figure 3.7 shows all Feynman diagrams as
well as the corresponding light-cone time-orderings, contributing to the anomaly in
fourth order.

The vacunm polarization diagram 6 can be computed by the effective replace-

ment [14]

1 « 1 t£2(1 ~ 1% ]
———-——-———() ‘)--—‘—" g “" /d, : :},' - 2 R (:;“‘ZJ)
k% — A% + ¢ T J 1 —¢= k2 T"giﬁ 1 e

after performing the integration over k= [15.16]. All diagrams in Fig. 3.7 (with ex-
. ception of graph 5) are ultraviolet divergent and require renormalization. However.
by computing certain sets of diagrams simultaneously, the calculation can be ar-
ranged such that ultraviolet divergences cancel between diagrams of the same set.
As an example, Table 3.1 shows the result of the numerical integration, using the
adaptive integration routine VEGAS [17] of diagram 1 and 2 for different values for
the ultraviolet cut off A2, After mass renormalization of the sell-energy diagram 2.

we observe only a residual A dependence of the form
! 2 o e
7 log A (3.22)

which can be easily eliminated by an appropriate fit in A? [18).
We obtain for our estimate of diagrams 1 and 2, @ = (=0.326 4 0.001)(a?/7"),

which is to be compared with the analytic answer of Petermann [19] « = —0.327. ..

a?/m? and Sommerfield. Table 3.2 shows the result of the residual diagrams. The

agreement with the correct result is better than 0.2% for single diagrams. To obtain
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Figure 3.7. Six Feynman diagrams and the corresponding light-cone time-orderings
contributing to the fourth-order anomalous magnetic moment to the electron,
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Table 3.1.

Result (6a) of the numerical integration for diagram 1 + 2 after mass

renormalization in units of (a/7)%. The data converge for large values of the Pauli-
Villars cut-off A (in units of the electron mass).

6a Lambda
—0.289 25
—-0.305 50
-0.313 100
-0.324 1000

Table 3.2. Numerical results (6a) for the two-loop diagrams of Fig. 3.7.
results are compared with the analytic answer by Petermann.
Diagram ba Result by Petermann
142 —0.326 £ 0.001 —0.327
3+4 0.780 £ 0.007 0.778
5 —0.465 + 0.002 —0.467
6 0.016 £ 0.001 0.016

Table 3.3.

The

Numerical results (da) for the sixth-order contributions of the dia-

grams in Fig. 3.8. The results are compared with the results given by Brodsky and

Kinoshita.

Diagram

6 a Result by Brodsky and Kinoshita

447
142
5+6
3+8

—0.114 £ 0.002
—-0.0031 £ 0.003
0.053 + 0.002
—0.09 £ 0.02

—0.115
—0.0032
0.053
—0.088

these results we needed typically only one minute of CPU per graph on a IBM3090.

These successes encouraged us to attempt some sixth order moment calculations

for the Feynman graphs shown in Fig. 3.8.

n Table 3.3 we compare our estimate

with the results obtained by Brodsky and Kinoshita [20]. For further references sec

also [21].
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tion.

3.3 Summary

We have presented a new algorithm for the automatic computation of Feynman
diagram amplitudes. The method, which is based on light-cone perturbation theory
(LCPTh), is explored for two- and three-loop calculations in QIED. The amplitudes
are constructed automatically aud explicitly, given just the photon connections of the
corresponding diagrams. The extension of the algorithm to higher loops is straight-

forward [22].
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One of the most useful applications of LCPTh and this algorithm could be the
computation of multi-jet processes in ete™ ~ annihilation, since LCPTh amplitudes
correspond closely to the quark and gluon jets identified in high energy physics. These

. reactions have not been completely calculated beyond the one-loop order in pertut-

bation theory. However, the extension to quantum chromodynamics requires a more

careful regularization of the ultraviolet behavior of the theory. The implementation
of dimensional regularization and other renormalization issues will be described in

Chapter 4.
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4. Ultraviolet Regularization of Light-Cone
Hamiltonian Perturbation Theory:
Application to the Anomalous Magnetic
Moment of the Electron in Light-Cone Gauge

4.1 Introduction

One objective of this chapter is to explore some of the renormalization issues in
the example of the anomalous magnetic moment of the electron a = (g —2)/2 to
order (a/7)%. Tn particular, the discussion shall focus on a renormalization scheme
whicl is also suitable for a numerical treatment, This requires the construction of

certain counterterms on the local level in order to prevent round ofl errors,

The first section of this chapter addresses problems associated with quadratic
divergences in light-cone quantized gauge theories. It is shown that Feynman gauge
leads to an infinite number of quadratic divergent LCPTh diagrams at one loop.
The situation is significantly better in light-cone gauge since in the continuum only
the self-energy and the vacuum polarization display a quadratic divergence at one
loop. However, a computation in At = 0 gauge requires a careful regularization
of the associated gauge singularity. Most regulators reduce the small & behavior
of the light-cone photon propagator to thal present in Feynman gauge, Thus, an
understanding of Feynman gauge is essential even if calculations arc carried out in

At =0 gauge.
The second section discusses the fourth-order correction of g —2 in the light-cone
gauge. Two different descriptions for the regularization of the &t singularity are dis-
12 Al . + . . Bl ] . . . .
cussed, The sensitivily of physical observables to a finite truncation is investizated,
The third section tests the ultraviolet regulators, which are commonly used for

the purpose of nonperturbative caleulations in DLOQ. 1t is shown that these reg-
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ulators do not recover the correct answer for ¢ = (g —2)/2 in fourth order, unless

special counterterms are invoked.

1. 4.2 Light-cone quantization in Feynman gauge
. | In any gauge different from light-cone gauge, canonical light-cone quantization

is anything but straightforward. This is due to the fact that, after solving the spinor

constraint equation, the light-cone Hamiltonian in these gauges contains terms which

S ey

are of arbitrarily high order in the A% field. Thus, in this case, we will not attempt

g

to write down the light-cone Hamiltonian, However, even without constructing the

!
:' light-cone Hamiltonian explicitly, one can still derive light-cone perturbation theory
1,
.;‘, (LCPTh) rules for Feynman gauge simply by separating the various light-cone time-
?i orderings of the Feynman amplitudes. A useful reference can be found in [1] (sec
1l
;E] . also Chapter 1).
]

Feynman perturbation theory in Feynman gauge has the advantage that even off-
3 shell Greens’ functions exhibit the full Lorentz structure. This simple feature provides
important consistency checks for light-cone quantized field theories, since manifest

covariance is lost in this case. In addition, it helps to disentangle problems associated

with singularities in the light-cone gauge propagator from problems intrinsic to light-

cone quantization itself.

We start our discussion with the evaluation of the fourth order correction to the
anomalous magnetic moment of the electron (g - 2)/2 in LCPTh, The Feynman dia-
grams and the corresponding light-cone time-orderings are displayed in Fig, 4.1, The
techniques we used for this calculation has been discussed in the previous chapter,

so that we only compare the LCPTh answer of the anomaly

2

ajeprn = (—0.324 + 0.004)%
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Figure 4.1. Feynman diagrams I with corresponding light-cone time-ordered di-
agrams contributing to the electron anomalous magnetic moment « = (g - 2)/2 to
fourth order.
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Figure 4.2. n-photon jellyfish graph.
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Figure 4.3. Powercounting for the n = 2 jellyfish diagram leads to a logarithimic
divergence.

with the analytic result by Petermann and Sommerfield [2,3]

In Chapter 3 some sixth order contributions have also been caleulated using LCPTh.

It should be emphasized that, in order to obtain this agreement, additional renor-
malization, beyond usual procedures, is necessary for the self-cnergy diagram 2 in
Fig. 4.1. This is because the one-loop self-energy exhibits a quadratic divergence in
light-cone quantization, which is rather atypical for gauge theories [4]. The “method
of alternate denominators” has been suggested as a possible solution to this prob-
lem [5]. However, in Appendix 4A we show that this method must be used with
caution if one wants to recover the usual Feynman answer for general perturbative
processes,

Whereas the problem of the one-loop quadratically divergent self-energy oceurs

also in AT = 0 gauge, any gauge different from light-cone gange, such as Feynman
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gauge, poses extra problems in light-cone quantization, To sce this, we consider the
“ellyfish graph” (IMig. 4.2) with n(n > 0) external photons inserted into the loop.
For any n we find a quadratic divergence in this diagram [6]. [Purthermore, extra
logarithmic divergences occur, which can be seen by power counting of the diagram
in Fig. 4.3 [7,8].

In the following we demonstrate that extra divergences in light-cone field theories
can be associated with certain noncovariant terms appearing in the light-cone formal-
ism. As an example, we investigate the n = 0 jellyfish graph 7,0 (which is actually
just the one-loop self-energy) with momentum p = (p*, p~, p1). We leave the explicit
calculation to Appendix 4B and quote the result obtained after mass renormalization

(throughout the paper we use the notation p¥ = pd 4 p¥ 4% = 10 4 %)

, ) vPoomtuy
Lico = (p ~m)B 4 (H— m)*S(p°) + e oo ( (4.1)
or
] - - ¢ .2 2 -1 .
Ztr('y In=0) = p~ (B = 2mE(p)) 4 }—)—;( . (1.2)

In the following we want to imply that the integral [ dA?p(N*) = 0 is always taken,

i.e., one Pauli-Villars subtraction is assumed, In the example of above we find

+ 2 .t 0 2
~ ey o me - I‘_L ..
C_..._. T e e l" k 1 e , Al “f:
pt — 167d pt /( LT o v4)

The quadratic divergence can be identified with the term (" in (4.1) and is therefore
associated with the noncovariant structure in the self-encrgy.

We note that the occurrence of noncovariant terms of the form (5% /pt s not
restricted to the one-loop self-energy [9] . In fact, all noncovariant terms we have
encountered have had this structure (for a discussion of vacuum polarization contri-

butions see Chapter 5),
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Figure 4.4. One-loop correction to Compton scattering.

As far as the sell-energy is concerned, a method which is based on the correet
tensor structure of the diagram can be proposed. This is possible since differend
tensor components should be related by covariance:

)"

t"'('YMI:«f'lf—('ncryy) = ;‘;‘; ('1'("/+Is('lf——(‘mr‘(/y) ) (:te1)

where pt, p~ correspond to the momentum of the fermion and lyy—cuergy denotes
the fermion self-energy. In one-loop it is straightforward to show that (4.1) is equiv

alent to the effective replacement

Py Pienergy—shell ¥ (1.5)

(sce Iig, 4.4) in the Dirac numerator, where pl = ptopd = pl- kT wergy—shell =
p~. The momenta p*,p~ denote the total light-cone momentum and energy respec
tively, Here, k7 is given by the light-cone momentum of the virtual photon. More
generally, proy e oy—shell defines the light-cone energy one would obtain i Tight-cone
energy conservation was imposed. The replacement (4.5) expresses the “had com
ponent” (Le, v7) in terms of the “good component” (e, 37) and thus renders
the self-cnergy covariant by construction. Hence, the problem of the gquadratic di
vergence is avoided in this case [10] . Equation (4.4) can be generalized to higher
loop self-energy diagrams, provided all subloops ave first rendered covariant and the

noncovariant picee is of the form 'y /pt,
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Whereas the tensor method provides a useful practical tool for dealing with the
quadratic divergence in sclf-energy diagrams, the application of the tensor method
for the cure of the jellyfish diagram with > 1 is not straightforward. This is because

the different tensor components are not simply related in this case,

It should be noted that in 341 dimensions the noncovariant term in Kq. (4.2)
and all other jellyfish diagrams can be eliminated more systematically, if the spectral

conditions [11,12]

/dz\gp(,\g) =0

o

/(z,\ﬂ,\”,,(/\i’) = () (1.6)

[

/(M”,\ﬁ’/ug(,\'l)p(/\?’) =(

are introduced which corvesponds to the introduction of three Panli-Villars ghost
particles into the theory, However, this is awkward fromm a numerical view, since the
number of degrees of freedom is enhanced dramatically in this case. For example, a
typical two-loop Feynman diagram, liq. (4.6) requires 16 independent computations
of its integrand at each integration point. This is in contrast to only | computations
in a covariant approach, In addition, the quadratic divergences would be cancelled
ouly among contributions from different Pauli-Villars particles. However, for the
purpose of numerical calculations, it is extremely inconvenient to cancel quadratic
divergences among different diagrams, because of the limited accuracy of any mimer

ical procedure,

Hence, for practical purposes, it is necessary to develop a recipe which reduces the
number of Pauli- Villars particles as well as subtracts quadratic divergences locally,

Le., belore integration, In this context we shall introduce the “nnll-subtraction™ as
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such a local procedure. For n = 0 the idea of the null subtraction is based on the

observation that the troublesome term in Eq. (4.2) is given by

tr(’Y—]v:‘:O)p—:o’pl:() (4.7)

=
+
o) =

where C' is independent of the external momenta. Hence, we define the null subtrac-

tion as a procedure where the “bad” component of a quadratically divergent graph
or subgraph is subtracted for vanishing external (with respect to the divergent graph
or subgraph) p~ and py momenta, while keeping p* > 0. In the above example we

obtain for the null subtraction

.

el

1 vt k2 4n?
: ] (Ll(l }\_]_ 27” _('Lf‘_]) Tu I
A Null = 16 5 2(1 —a) _miaky _ Nkl (4.8)
w 0 (t=z) — T )
o
g( Performing replacements similar to those given in Appendix 413 yields
g g rej g pi \
1
b
A 2 0
?1 Lo = dr | ky A"~ :
, 1€7r p'*' —I— Al — )+ m-r

1
2+
[& 7 ) ‘],9
= 1670 pt da ,/d I‘J-‘_l%(m rA N =)+ k) v
0
LT n? 4+ k2
Al AR
_ k) log
i6n3 p4 /( + og )‘) + kY

What we encounter here is nothing but the noncovariant piece of Iiq. (4.3). Hence,
the null subtraction removes the quadratic divergence automatically in the correct
way.

Let us examine now the null-subtraction for the jellyfish sraph for n =1 (which
is actually the one-loop vertex correction in this case). The covariant answer is
expected to be of the form [13]

T* = 4" Fy(q*) + —l—a‘ g (gt (1.10)
772

4
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Using the Gordon-decomposition, Eq. (4.10) can be rewritten as

ﬁ ﬂwm=ﬁwuumﬁHJuf»—ém+ﬂﬁ&()@*”)mx (4.11)

Votp'
1. e
Yll TZ]W—-' (p + p )

. . 1 )
— A B 2 1y 2 —_— Al N T O '
& C= T ) ) ) R D

(4.12)

where A, A denote the initial and final helicity respectively. The momenta p and p'
correspond to the initial and final fermion respectively. If one inserts the analytic
form for the second term on the r.h.s. of Eqs. (4.11) and (4.12), the sum [(¢*) +

v

I(¢*) may be computed in two different ways: Fi(¢?) + I2(¢*) can be obtained

1/ ¥ . h - D 1 Al e ‘e My, . l . N
¢ from the I't current by means of Eq. (4.11). This is straightforward, since we do
i

Y| not expect trouble in this case [14,15]. However, the extraction of I1(¢*) + I {q*)

A

by means of I5q. (4.12), i.e., by computing the I'™ current requires a null subtraction

which takes the form

1 .2 2 .2
TS B R L S S 2. e AN -
(n=1) dld 'I‘ R ‘L; R z  pt ! (] l%) ‘
Null — l()ﬂ'& 1 1 B r)” me4k? A24- k2 9 ’ o
0 (=T~ =)

Note that we only subtract the 4+ component for zero external p~™ and p) momenta,
If the null subtraction removes the quadratic divergences correctly, the result for

Ii(¢%) + F4(¢*) should be the same in both cases. We have checked this statement

numerically [16]. Hence, the null subtraction restores the covariant answer also in

the case of the n = 1 jellyfish graph.
If we take those results, together with the fact that the one-loop Ward identitics

are fulfilled for the good components in LCPTh, one can say that the null subtraction

preserves the Ward identities at one-loop (for external fermion lines on shell). '
It should also be mentioned that we have checked the null subtraction method

for the case of the two-loop rainbow self-energy in Fig. 4.5. More interesting. how-
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Figure 4.5. Two-loop rainbow self-energy diagram.
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Figure 4.6. The two-loop self-energy contribution of the electron is expected to
be of the form A+ Bp, where p corresponds to the external fermion momentum. The
result res shows the extraction of B by means of the various components of p.

ever, is the two-loop self-energy of Fig. 4.6 since it contains two n = 1 jellyfish

subdiagrams [17]. The corresponding null subtractions are

62 1 1-zx |
Iy = = | d°ky da [ d°kqyd
! (1673)2 0/ 1L 0/ 2L ymy(] —z)(1 —y)(l —x —y)
2 _A2+k7 + ]
yh gyt ARy 2R Ly ()
X (__m2+kf_1_ _ kh+/\7)(_rn7+kf_L _ kf +A? _ _,_\_-)( - _ m?+{p1—k21)? _ kg_L-O-Xz)
(1-z) z (1-z-y) T Y (1-y) u

(4.1)

where py = (1 —y,p™ — (A2 + ka1 )/y,pL — ko1 ) and
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1—2
1
d* d 2
o = 57 / 11 “/dk“dy S S [ T ey

2
v-(py + m) 7,;“—& *]'y*v“——i—ﬂ-’\ k 1-777“

X ()_ _ m.7+!pJ_—ku! _ /\2+k1 )(” m24-k? A2 /\2+k2 )( m"’—+—k?z k?R +,\7)
I i—z T 0=z-y) ~ = v TSy T Y
(4.15)

respectively. Figure 4.6 shows the result of the numerical integration for different

components. The result is that the null subtraction eliminates the quadratic diver
gence and restores a covariant form within the error of the calculation

I'he general definition of the null-subtraction of the n-photon jellyfish graph

pt

(52 .
1, =—.-—.~~3—)/(lk+d3kl
‘ 0
O(pt —kM)O(pT —kt —q¢f) - Ot -kt - —q)
Kt — k) (pt —kt —qF) - (pt =kt —gf = - o)

Y (py A+ m)y (P + )y (£ )
oy — k= — m24(pr—ki—qii——qn1)?
T

(7’_ e miA(paky )
(4.16)

with external fermion momentum p = (p*,p~,p1) and momentum ¢; = (¢;", ¢, ¢iL)

for the i-th external photon line is given by [18]

pt
n (2 dk dk
L
0
L Ot — ket — k* - gty O@pt -kt —. .. —qt)
kH(pt —kt)(pt =kt —gf ) (pt =kt =g = =)
yApryty dpr vty gt
RPN R (R k2 £ A2 —kZ 4 A2 SESY
( ; T opt-k ) ( - p+jk+—(1,+> ( e P*wk*—;f"q?“"-qﬁ)
(4.17)
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where k= = (k% + )?)/k*. The fermion light-cone energies p;” are given by p. =
~(k3 + A2)/k*,if p7 is set on energy-shell i.e., the i-th fermion line does not extends
, over more than one intermediate state [5]. The on-mass-shell case yields p; =

(m? + &%)/ (pt — ki - gi — - -¢). Note that the null subtraction in (4.17) is to

be used in combination with only one Pauli-Villars particle. Thus, the number of

degrees of freedom is considerably reduced. The was possible since all higher-loop
noncovariant terms are independent of the photon mass. We elaborate on this issuc

in more detail in the next chapter.

The null subtraction was developed to deal consistently with quadratic diver-
gences, in particular in the context of a numerical treatment. In Chapter 6 it is

shown that the occurrence of noncovariant terms is due to nonvanishing surface and

zero mode contributions in light-cone quantized field theories. An alternative method
based on the addition of noncovariant counterterms to cure these problems will be

proposed in the following cha.pters.

4.3 Light-cone quantization in light-cone gauge

For nonperturbative methods such as DLCQ or the light-front Tamm-Dancoff
procedure, At = 0 gauge is by far the most favorable choice among all gauges. This
is due to the fact that ghosts and spurious degrees of freedom should not occur in
this case. Furthermore, it seems to be the only gauge where canonical light-cone
quantization is tractable, since it avoids having the A% field in the denominator
after solving the constraint equation for the left-handed spinors. In addition, only
light-cone quantization in A% = 0 gauge provides a convenient extraction of hadronic
structure functions and, therefore, ensures an intuitive picture of high-energy scat-
tering processes. Due to our discussion of the previous section, we may add the fact
that quadratic divergences and noncovariant terms are restricted to a much smaller

set of diagrams, compared to any other gauge. However, as a noncovariant gauge.

a
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A% = 0 requires a careful regularization of its &+ singularity, in particular because
the covariant structure in a Hamilton formulation is already lost. Many procedures
have been given in literature to regulate the light-cone gauge singularity [19-21]. In
any event, every prescription gives rise to the introduction of a regularization param-
eter € into the theory. It is essential for analytic, as well as numerical calculations,

to ensure independence of physical quantities on the € regulator.

In this section, we want to focus on € prescriptions, which are easy enough to im-
plement, i.e., they are of potential interest for practical applications in DCLQ or the
light-front Tamm-Dancoff procedure. In addition, we investigate, in the particular
example of the anomalous magnetic moment of the electron (¢ — 2)/2, the sensitivity
of physical observables to a truncation at finite . We start out with the light-cone
gauge propagator, which has the form

4,18
n-k ! (4.15)

d;w = =Guv

where 5 -k = k+ [23]. One possibility to regulate the 5 - & singularity is given by

(k- . 4,19
— O(n €) (1.19)

duu = —Guv +

Note that the @ —function of the second term does not regulate the gange piece
only, but also all energy denominators which will multiply this term. Since gauge
invariance in QED should occur locally (or quasi-locally [25]) we expeet the correct
result for the anomalous magnetic moment of the electron for any value for ¢ be-
tween zero and one. This is exactly what we observe in our numerical calculations,
It is instructive to see how the contributions of single diagrams add to the gauge
invariant answer. This is shown in Figs. 4.7 and 4.8. We remark that contributions
of single diagrams grow logarithmically if ¢ gets small, which makes it more difficult

to maintain the numerical accuracy for small values of ¢. In order to obtain these
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graph res 8] £
!l
| 1 %\ 4941 2.2 0.05
| 2. -172.9 1.1
|
3. A 2.34 0.3
i 4
i : ~734.55 1.3
/
!
] 5. 319.17 1.1
: N % o 0.48
NI T\pkv
1 7. + ~121.1 2.3
npkv
| E. -3952 2.0
t m.s™
|
9 m —428.8 2.7
9-91
Total Result -137.8 5 7009A12
Figure 4.7. Contributions res of single LCPTh diagramns to the anomalous ag-
netic moment of the electron a = (g —2)/2 to fourth order in light-cone gauge foy
different values of the light-cone gauge cutoff ¢ [24].
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graph res c £

1. %\ 523.73 2.5 0.5
‘L
2. % -135.63 1.3
3. A -9.16 0.3
4. A 182.5 0.2
5 A ~167.4 0.73
ﬂpKv
7. + 419 0.6
npKv
8. -104.7 0.04
m.s—
. i& -852.7 2,2
9.91
Total Result -134.7 3.7 7008A13

Figure 4.8. Fourth-order correction to the electron anomaly in light-cone gauge
for a different value of its gauge regulator. The analytic Feynman answer is given by
~137.2 for /27 = 10.
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Figure 4.9. Instantaneous contribution to the external wavefunction correction in
light-cone gauge,
results, it was essential to include the instantaneous self-energy diagram of Fig. 4.9
which vanishes in Feynman gauge. This is because the external self-energy diagran:
does contain a double pole in A =0,

The price we pay for the complete e-independence of physical observables for the
regularization introduced in Eq. (4.19) is that for 5 <& < ¢ the compntation is carried

out essentially in Feynman gauge. Indeed we find
mdt (€) = =gt~ (1 =0k — ) # 0 (4.20)

for n -k < ¢. Basically, any prescription which regulates the second term in Lig. (1.13)
different from the first one exhibits this feature. This is why, even in light-cone gauge,
the existence of ghosts cannot be excluded in general [26]. From a technical point of

view Eq. (4.19) means that the jellyfish problem does occur even in A+ = 0 gauge.

The only exception to this case is given by a regularization, introduced through

Nuky + yk
dlu/ =1 —gu + “]L‘L“_“']_‘/‘l)@(” k=) (1.21)
Nk
which means that At = 0 gauge is strictly obtained even at finite ¢, i.c,, At () =
0. The advantage of this choice is the absence of ghosts and the jellyfish problem
at finite e. However, regularization (4.21) will, in general, truncate also physical

contributions to Feynman integrals. Thus, correct physical answers are recovered
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Table 4.1. Total answer for the electon anomaly to fourth order in light-cone gauge

for different values of the gauge regulator. The analytic Feynman answer is given by
LE 2

a=—-1314... (a/m)".

ba €
-128.3 4+ 3.3 0.0
-1256.6 £ 1.8 0.01
-106.3 £ 1.1 0.05
57.5 £0.1 0.1

only in the ¢ — 0 limit. For the purpose of practical applications, such as DLCQ,
one can investigate the numerical significance of such a truncation. In Table 4.1 we
present the result for the computation of (¢ — 2)/2 for finite ¢, using the prescription

in Eq. (4.21).
1.4 Regulators in DLCQ

Nonperturbative methods should generally be compatible with perturbation the-
ory in the weak coupling domain of a theory. In lattice QCD, for example, the data
scale like the one-loop f—function for weak coupling. This important feature indi-
cales the recovery of the correct continuum field theory for small values of the lattice
spacing. A Hamiltonian formulation of field theory, such as DLCQ. should in prin-
ciple reproduce correct perturbative results for any scattering process to finite order
in the coupling. Thus, the calculation of ¢ — 2 to fourth order provides a powerful

consistency check as well as an ideal testing ground for those methods,

We start our discussion with the test of the global cut-off, which is commonly
used in DLCQ [22). The global cut-off regulates an intermediate state with n particles

according to

n 2 “2
Ty
1=]
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Figure 4.13. Ladder diagram contribution to the electron anomaly in fourth order.

where z;, k; 1, m; refers to the light-cone «, the perp.momenta and the mass of the
i-th particle respectively. A denotes the ultraviolet cut-off, which is taken to infinity
at the end of the calculation. Our result for the calculation of graph 142 in Fig. 4.1
is R142 = (—0.34 £0.005)a?/7? which is to be compared with the analytic result
by Petermann: Rp = —0.3285... «?/n% . The result for the ladder graph using
the global cut-off is (0.658 4 0.006)a?/7%. However, the correct answer is given by
R = 0.778a*/n%. Thus, the global cut-off does not recover the correct contimuum
answer in the limit A — oo. In order to understand what has happened, we recall
the theta-function in the ¢ — 0 limit for the counterterm (see graph 4 in Fig. 4.1)

e 2 2 2
c (“m Do T, A‘f> , (1.23)

] —-a x

where m, A denote the fermion mass and the photon mass, respectively. Here, the
variables k; | and x correspond to the loop momentum of the virtual photon [27].
However, the theta-function of the second intermediate state of the diagram corre-

sponding to Fig. 4.13 is given by

9 . 2 2 2 20
o (mm + (kL +ki1)® ATHE A '*‘I“Uu + /\2> (4.21)

l—a—y Y X

Obviously, (4.24) does not reduce to (4.23) in the large ks limit and hence does
not allow a factorization of its infinite contribution. This eflect induces the observed

deviation from the correct answer in the A — oo limil.,
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Figure 4.10. Correction to ete™ scaltering,

Recently, the so-called local cut-ofl has been proposed (28], which restricts the
difference in the invariant mass locally, i.e., at a given vertex only, to values less
than A%/, Here @ is given by the fraction of the light-cone momentum which flows

through the vertex under consideration, Hence, (4.24) gets replaced by

)

d,ﬁ.”l + (kyg + Koy )? _ A kg + m? 4+ k) < AN

R QS

(4.25)

|~ -y Y l —

Changing variables according to y = (1 — )9, ko = kot — ghp and AY = AY =
reduces (4.25) to (4.23) and, thus, avoids the problem of the global cut-ofl, Indeed
our calculations show that the local cut-off reproduces the corveet result for the ladder
graph, Unfortunately, it leads to the incorrect answer for graph 142 in Fig. 4.1, It
is straightforward to show that the local cut-off violates gange invariance already at
the tree-level [30].

Other theta-function cut-offs, which have been proposed [31], are also doomed
to failure, unless a noncovariant counterterm is invoked. The reason is that they
depend on momenta, i.e., derivatives only. }"Iowowzr, a gauge invariant regulator
would require a functional dependence an covariant derivatives instead,

In Appendix 4C we demonstrate the implementation of dimensional regulariza-

tion on the light-cone,
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4.5 Summary

We have shown that light-cone quantization in Feyuman gauge leads to an infi-
nite number of quadratically divergent LCP'Th diagrams at the one-loop level, 'I'he
problem occurs for self-energy diagrams where n-photons (n > 0 ) are inscrted into
the loop (“n-photon jellyfish problem”). We constructed a local representation of
noncovariant counterterms, called the “null-subtraction,” in order to remove those
divergences from the formalisim,

In principle, also light-cone quantization in light-cone gauge exhibits this feature
for all n (and not only for n=0), This is due to the fact that most regularizations of
the light-cone gange singularity reduce the small @ behavior of the photon propapator
to that in Feynman gauge. In this case, the null subtraction can he used in the sime
way,

In Section 2 we evaluated the fourth-order correction to the anomalous magnetic
moment of the electron in light-cone gauge and veproduced the analytic Feynmman
gauge result by Petermann. It was shown that a finite trancation of the &Y ~ 0
region can lead to a significant modification of the continuuny result.

Finally, several ultraviolet cut-offs, which are commonly used in DLCQ, were
tested in perturbation theory, It was shown that those regulators do not recover the
correct continuum field theory in the A — oo limit.,

Appendix 4C demonstrates the introduction of dimensional regulavization into

the light-cone formalism,
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1.6 Appendix 4A

]

In this section we discuss the “method ol o' ornate denominators” which was
introduced in Ref, [5] as o possible way of removing quadratic divergeunces in the light-
cone formulation, Tor illustration the one-loop correction to the Compton graph,

shown in g, 4.4, yields [32]

TE(H A+ m)

[('amp == -
Clomp, e T
]’M})‘ 23__”7’ 1)
!
r ‘
X /(IA"*‘(I'“)/\"L Yy = kA m)y,
| | | T O L 1. et 0 A s 4.
0 (pr = kbl (= Pt )
(1.206)
+
n

0 N k),
- /d/\?"'r/“/\‘_l‘ Yy~ FA )y,
(

YR T
ny - Ar)""k-f-(})'l— Comipa—kl)t A MJ_)

f GRS &

(fy -+ ) fru

o omp?
Py (= )

The second term is the alternate denominator (a.d)) subtraction which is designed
to cancel the quadratic divergence in the fivst term as well as perform the mass
renormalization (see Fig, 4.11), The a.d. term is obtained by replacing the initial
energy py in the energy-denominator of the quadratically divergent subgraph by its
adjacent energy pp which is, in case of the self-energy diagranyin Fig. <44, equal to

the mass-shell energy pi (sce below),

9-01 7009A2

Figure 4.11.  Mass correction to clectron Compton scattering,
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Obviously, the quadratic divergence is subtracted in this procedure since it is
independent of the incoming energy. However, it remains to be shown that the mass
subtraction of Fig. 4.11 is carried out correctly, using the a.d. method. Note that
the a.d. term I, 4. of Eq. (4.26) is obtained by performing the &7 integration of

/d“ U/ (Py +m)

(p? — m? + ie)

x( Tl = F)+ )" ) Lot
(B1 — k)* —m? +ie)2(k* = A* +ic) ) (pi —m? +ic)

Here, py is on-shell, i.e., p{ = p for g # — and py = (m? + pi )/pf. However, the

usual Feynman counterterm is given by

I :_L Sk TP, + )

2m (p? —m* + ic)

WP ) vu(Pr = F) + 1)y ulpn) (foy A1) f u
X ~ ) 9 C N2 2 2 N Y Y \
((Pr — k)2 =mt 4 ae)? (K2 = N2 4 0c) ) (py = 4 a0

.

(1.28)

Obviously, there is a difference between these two expressions hecause of the spinors
ulpy) and @(p;) which project out the édm piece frons the self-energy in kg (1.28).
Thus, we conclude that the a.d. method inust be used with caution. However, if one
ignores the double instantaneous g.aph of Fig. 4.12 for a moment, at least one of the

fermions is on-shell and the corresponding propagator

D+ m

])f — 1

gets replaced by

Ph o+ mooo u(py.s)u(py.~)
-3

)
p — <Py T
R

so that the missing projection onto the & piece in Fo. (41.27) is achieved by the

adjacent on-shell fermion line. The point s that. unless one 1 cantious, the ol
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Figure 4.12. Double instantancous diagram to electon Compton scattering.

method treats the double instantaneous graph incorrectly by subtracting a nonzero
contribution [33].

Thus, if one modifies the a.d. method such that the subtraction is excluded from
the double instantaneous self-energy diagram, the usual (Feynman-) answer can be

obtained [34].
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47 Appendix 4B

In this section we prove that the n = 0 jellyfish graph (which is actually just the
one-loop self-energy) with momentum p = (p*,p~,pL) has the form

+ et
— _ - _ 2 2 - Z__ _ U‘Y u ) I(
Li=o = (p—m)B+ (p —m)°L(p°) 4 (P+ 2”7’]}+> C (4.29)

after mass renormalization. In the following we want to imply that the integral
[dA2p(A?) = 0 is always taken, i.e., one Pauli-Villars subtraction is assumed.

LCPTh yields for the v~ and v, component for the n = 0 jellyfish graph

-4 c? drd?h
LT = - e rd°k
1673 1
0

7 i’ L ’7;4

X S e m——
(ky —pra)? —pia? —ppta(l =)+ (m* 4+ p7)a + A1 = 2))

(+4.30)

where the “good” vectors p = (pT,0,p) b = (kF,0, k1) have been introduced. The

quantity @ is given by the relative momentum carried by the virtual photon, i.e., @ =

- . . . i - )
kt /pt. Rewriting the denominator in terms of the four momentum p* = p*p™ -y
and shifting integration variables yields

: Bl — )

)
g [ | )7 ' : 131
873 U/‘ T .L_l\‘i +a(l —a)p* - miae — N1~ o) ( )

For the 4% component we find

1 m”+
| At ~‘~——Hp (1 =)
4 _ 4.8
Lt = z—-——+ /dld Al-—l\ T : . (1.32)
0

(1 —a)p? — e = A2 =)

an . . . ) 0 .
Since we are using Pauli-Villars regulator, the replacement k5 — p=a(l—a) = -
A (1 =) does not change the value of the integral [35]. Thus,

1

xp’ AL y
/([”1 hi— Ll H) =) (1.43)
__A«l + x(l —-.r)p— =t = N - )

":iQ
+| +

~
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Using

zp? + (m? =\ = - [(1 - 2z)p? —m? + )\2] + (1 - 2)p?

d . " ) ]
= -0 [pzm(l — ) - zm? — (1- 2\ — ’\‘-j_] + (I - )’

we obtain,

1
o2 + d _
NS oAl 2, 4. 4 201 _ 2 2
L _87r3‘2p+/d kldxdmlog(p z(l —z) —wm® = (1 —a)A" — k)
0

(4.34)

9

1
© 1 . 1 —2)p~
- —;—_i“:_ * /dzk.l_dl‘ 7 ( , - )p b 9
gme 2 —k7 + (1 —z)p? —mfa 4+ A (1 — )
J .

Obviously, the last integral corresponds to the integral in Iiq. (4.31) and is there-

fore part of the covariant answer.

However, the first integrand in Eq. (4.34) is noncovariant and leads to

9

+ 2 + 2 .2
Y ey 0 m* + ki
('— = —— [ d*k ) log ———5 4.35
pt 1673 pt / LT ks (4.3)

The total answer becomes

1
12 + 2 1 y D 9 9
o + =0 :.1—16?77?]2)? /d“kldm(—;—; log(p?a(l —x) = am” = (1 —a)A" = k1)
() l
- o [ dkide— Q-a)p—m
T J - ~L+ar(l—~:ln)p~—m~a,—/\~(1~~.7J
4 —(1 4+ 2)m
—k'i + (1 —a)p? —mPa = A1 — )
(4.36)



where §m denotes the mass correction. Performing mass renormalization yields

: 1673 \pt 2m pt
‘ 1 d
' X /dzkldw-d—- log (;72:1:(1 —z)—am? = (1 —2)\ = ki)
T
0

1
e’ (I =az)(p—m)
~ — [ d®kydo— , ,
83 / L T~l.~.i + z(1 = z)p? - m*x — A (1 — )
0

1
(32 1
- — [ d*k, dx : : :
8#3/ 1at (_}\:i+m(] *(E)]JQ——?H“’J‘ - A1 _‘1,))
0

(1 — 2%)am(p?* —m?)
(k3 + 2(1 = 2)m? —m?z = A1 — 2))

hd

Thus, we obtain the form of the self-energy in Eq. (4.29).
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4.8 Appendix 4C

In this section, we demonstrate the use of dimensional regularization in light-cone

quantization. For illustration we discuss the computation of the ladder diagram in

Fig. 4.13. LOPTh yields

' 1 l—-1

e . 1

F = [ dz d%ky | dy POk, : :

LT 60 / ‘ / Y oyl —2)!(1 -« — y)?

0 0
. Ng, ks, k)
(T‘I‘I"Z _ m"’-{-k""1 _ kf-h\"') (7’7?2 _ m2+(ky+42)? N k1422 _ kg—{-)\?)
' -z T ‘ T—z—y T v

where m, A denote the fermion and photon mass respectively. The Dirac numerator is
abbreviated by N(q, k1, k2) and will be S]')(?(‘.iﬂ()d later. Note, that the ¢ dependence
in the denominator can be dropped, in this particular example, since it gives no
contribution to the anomaly. Notice further that only the inner loop is ultraviolet

divergent and requires regularization. The introduction of dimensional regularization

/<at d')/\——*/ r o d20-0 (4.38)

seems dangerous, in particular if the integrals are not absolutely convergent. How-

according to

ever, (4.38) is a direct consequence of the definition of dimensional regularization [36)

. We have not yet encountered an example where (4.38) leads to additional difficul-

ties (in comparison to one Pauli-Villars photon and fermion for example) in the
light-cone formulation.

Shifting momenta and setting m =1 yields

1 1
ot ,
]’1 2 e 5 /d‘ldzkl/d‘/
(JOW’)“O . (1—1)41(]“11t%i—-1\‘]—)~’
i (4.39)

X /(12(1"()17‘2 N(({skl,k‘z — ( _r)kl) .)

(Zé T;zlxq-{-y(_ T‘l/)( | AL 1*1— +‘l +Au:>>
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where kg = kg +y/(1 — 2)ky and k7 = (kF + A?)/a, ki = (k3 + A%)/y. 11 we expand

the numerator according to

Nlgrk, by = i) = AR + Bk 4 C

the last integral can be performed analytically by means of

/ d“l L, Il PA-1-w)
(2m)2@ (12 4 M2)A — (4m)*D(A) 2" (M2)A=1-w

With the definition

o
[k ayy) 00

1 |

X

—-I (1-r)?

one abtains

l=r—y

(] - lliii - /‘.]»)“ =y yUl-_rI—y) (—-l ETEN

oo A
'l ¢—!I)

1 1
A N ’ |
Fl = ey /‘l"h dyf(ky,ey) ( (A AN = = = Cou) + m(Bh+ ) )
(167%)* (
0

0

(L1

where we have written A(e) = A+ A" . A, A" B can be computed, using a algebraic

manipulation program like REDUCE. (4.41) can be integrated numerically, 'y i

the Euler constant and given by Coyp = 0.577... .

The counterterm to Fig. 4.13 (see diagram 4 in Fig. 4.1) is computed in a similar

way. It should be stressed that the pole in the one-loop vertex correction of diagram |

in Fig. 4.1 not only cancels the pole in Iq. (4.41), but also gives rise to a finite

contribution [37].

We have redone the entire fourth-order calculation using dimensional regulaviza-

tion. Unlike the computation of the ladder graph, in gencral one has to combine.

energy denominators first, before the analytic part of the integration can be carried
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out. In contrast to a covariant theory, only one additional a parameter is neces-
sary in light-cone quantization. This is due to the fact that the photon propagator
1/(k* 4 i¢) simply becomes 1/klJr in this case.

On the other hand, the coefficients A, A', B are harder to extract in light-cone
quantization since the fermion energies generally depend implicitly on the loop mo-
menta.

An understanding ‘of dimensional regularization is essential, if one wants to ex-

tend LCPTh to non-Abelian gauge theories.
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5. A HAMILTONIAN FORMULATION
OF QED,,; ON THE LIGHT CONE

51 Introduction

One of the main advantages of the light-cone quantization in field theory is its
manifest invariance under a maximally large subgroup of the Lorentz group [1] which
contains even certain boost transformations, The corresponding generators of these
“simple” transformations are nondynamical operators, i.e., they do not involve any
interaction terms, Such nondynamical symmetries can be preserved under a wide
class of approximations (2], such as, e.g., cutofls in the number of particles, This
feature greatly simplifies the task of constructing the Hamiltonian formulation of a
relativistic field theory.

The price to pay for having simple gencrators of boust transformations is the oe-
currence of complicated and dynamical generators for certain rotations which implics
that angular momentum is not manifestly conserved in the light-cone quantization,
We will show that this results in a divergent structure of even super renormalizable
theories,

Rotational invariance, is not a natural symmetry in the light-cone quantization
procedure since it mixes longitudinal and transverse degrees of {freedom, In particular
an improper treatment of the short distance singularitios due to regularization will
result in a violation of rotational invariance. In fact most approximations or regular-
izations (if infinities are present) will spoil rotational invariance, for rotations which
mix the 2 = (7, 2!, 2%) and 2 direction [3]. In this chapter we will concentrate on
this aspect.

We will discuss several complementary approaches to this problem. The first,
using Pauli-Villars (P-V) regularization, softens the short distance singularities and

thus avoids the cause of the problem, since it regularizes symmetrically in longitu-
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dinal aud transverse coordinates, The second approach starts from the naive light-
cotte quantization. Any violations ol rotational invarlance, eg., due to an improper
treatiment of the short distance singularities, are then cancelled by adding explicitly

rotational noninvariant terms to the light-cone Hamiltonian,

The resulting vegularization and renormalization program has « priori nothing

to do with the usual renormalizations of mass and charge. As a matter of fact,
while infinite mass and charge renormalization are often not necessary ju less than

341 dimensions, the problems which are discussed here appear in any nunber of

=R

dimensions (except in 141, where there are no spatial rotational) (4],

s

In order to cimphasize this point we will mostly work in 2+ 1 dimensions, This

-
S

fyies $,—'£;_:;a§,‘.

will help separate light-cone specilic divergences and renormalizations from the usual

ones.  An extension of the techniques developed here to 341 dimensions will he

described at the end of this paper,

52 Pauli-Villars regularization of the light-cone quantized

Yukawa model

As a simple example, which exhibits many of the light-cone related problems, we

first consider the light-cone quantized Yukawa model,

e o )
L= TP = ) = O+ N+ T (5.1)
in 241 dimensions,  TU s casy to study the violation of rotational invarianee in
Lhis model since it is—in contrast to, e.g., gauge theories in the light-cone gauge
deseribed by a fully covariant Lagrangian, i.c., even off-shell Green's functions should

exhibit covariance, In particular, one should be able to express the fermion self-

encrgy in the form

S = (- ) L5 A+ () (5.2)

(8
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However, naive light- me perturbation theory yields (5] (A similar caleulation

@LED(3 + 1) has been doce in the Appendix 4B of Chapter 100 at one loup

1 ou
- . | - £
tr (St = ¢ pt / dr / 1k _ : S —
(297) P ! L ol =a)p? = mPr = ALy ey rp
0 -0 o

— M Ly AT

R
£
-~

1 o '”_.ij’('l'*

)’
c ‘
tr(¥y7)=-— [ dec [ dk - . Lo
(57) pt / / 'L:r(] —a)p? =t = AL =) by apy )

0 — 0 ‘ 5

— A AT

e

.

E‘; where ¢ = ~*/r . Adding - K
gl 0 ooa(l—a)p? —mfae = N1 —a) = (hy ~apy)” . \- o
18 = - 5 5 5 woe T e [REREN
":gl ] I —a a(l —a)p? — e — N =) = (b~ apy)-
to the integrand in Eq. (5.4) one finds
1 o< ) ) \‘) ( l 9
N c rpt s — A4 (L = a)p
tr(Sy7) = _Jr' 2 2 . :L IR
(1 —a)p? —mle — A (1 =) = (hy = upy)
[

SN A”

1

_ —(;: /(l'x: /O‘OC“\‘l (1 - ’r)(p2 + p?‘ ) — ——— = [x(1 - r)pt =t = A4 = )]
P

(1 —x)p? —miz — A¥1 —a) — (kp —apy)?
0

_ P +) 5 E) o
_Iﬁtr( ¥ 97)+ K\/m VA /\——v/\J

(5.6)
Obviously two conditions, namely [ d\?p(A\?) and fd/\Q\/ A2p(A%) = 0, are necessary

to cancel the noncovariant, term which implies the need for ar least two P.V. particles.

This is rather unpleasant and perhaps unexpected, since—in a manifestly covariant
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approach  the fermion selfenergy in Yukawa, s finite by power counting As we
Lave seen heresin heht cone quantization Lis hocarly divergent and extra degrees of
frecdonn bave to be prroduced to make (U hnte and covariant - A~ for a~ pertarhation
Hn*wr},‘ s concerned. one uf the !4'(E§w«w (!4'\4"}t»;'»4'1§ i the presions ()mlalu'l can be
waed o cure the problems However o the Hamltansan formahion, one does not
A bt on ass shell matoy elenents thereofs Tl s general it wll
be techancaliv more diflicult to develop an alponthm for extractmyg the noncavarnan
preve. Nevertheless the noncovariant ternis still have observalde effecrs which allow
one to extract them We will disonse thae pornt laver in the conrest of QFD Ly

Onie showdd eopliasize thet the vernowhach violates the rotational wvariance de
pends ondy on the external p* hut not on p,oor pr Farthermore a simple calenlation
shows that 1 (X and 1 (N4 ) do not comtain such extra terims. This implies than
we can write

-t

X“'(I'“) = Z“’I‘(l'/') 4 const. R (H.7)

Pt

This is a general result which also holds for higher loops [6]  provided all nonco-
variant terms have been removed for subloops ~and for other field theories like e.g..
QED in light-cone gauge. This has various practical consequences. First one might
be able to remove this term by adding a countertermi to the Hamiltonian (1.e., hy
changing the mass of the fermion in the kinetic energy term). Secondly this allows
one to develop simple subtraction procedures in perturbative calculatiors to get rid

of such terms (see null-subtraction introduced in Chapter 4).

A last point which we are going to make in the context of Yukawasy; concerns
the “over regularization” of the theory. As we mentioned already there are no P-V
particles necessary in covariant perturbation theory whereas we needed two of them
for a more one-loop treatment. At higher loops the situation becomes a little better,

namely one P~V particle is sufficient (provided subloops are rendered covariant) but
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it is also necessary in general as the example in Appendix 5B shows. For renormal-
ization theories where PV regularization poses no extra problems, like QD3 y, this
means that there is no more regularization necessary than one would normally need.
However, in non-Abelian gauge theories P-V regularization violates gauge invari-
. ‘ ance and we would have to restore it by further counterterms. We also emphazise,
and this can also be read ofl from the example in Appendix 5B, that dimensional

regularization does not take care of the noncovariant terms. The reason for this is

s

that dimensional regularization in the transverse coordinate does not regularize the

longitudinal coordinates.

ARG S e

b

5.3 Hamiltonian formulation for QED,., in the light cone

™

1 gauge (Pauli-Villars regularization)

i

f%g’ We start our considerations frem the QED-Lagrangian in two space and one-time

‘.%«‘

?}" . dimensions with gauge fixing term (n, A" = At)

3

|

i o : I 1 Al ATz litr ‘f , jiyd row
L= Lyem + 3u A" = 1 Fuy FPY 5'1'1‘1(:03 (1, A")" (9.8)

For the purpose of P-V regularization (as well as if one wants to introduce an IR-
regulator) it is necessary to specify how to introduce a mass for the A-field. One
might be tempted to add just a term like (A%/2) A, A" to Eq. (5.8). However,
since A A* = ATA™ - A'i = -—Ari (note: AT = 0) this means that only the
L-degrees of freedom become massive whereas the longitudinal degrees of freedom
remain massless. In terms of the photon propagator this means

g - k“n"g;]k"n“ + /\(2111‘;‘)7;”

D}" = ~ lim [(k’Q — A®)g" + Entn” — k”k‘l}]“] =~ k2 — A% 4 i

£ 0
4

(5.9)
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i.e., even at the tree level, the photon propagator does not vanish for A* — oo and

the “instantaneous”contribution

llm D“" -
A—oo (nk)?

remains. What one has to do, in addition to adding an (A%/2) A, A" term to L, is
to introduce a dynamical longitudinal degree of freedom: a scalar field ¢ of mass A

which couples with strength (eA/k1) to the current 51, i.e.,

8Liong = —¢(O+ A*)¢ + icAg —7—); n g (5.11)

The effect of this scalar field can be absorbed into the photon propagator, yielding

~ ghv — Wk AT
DY (efl) = DY + DY (longitudinal) = -3 e A”?" . (h.12)

Since for on-shell Greens functions the n/A* terms do not contribute [T], all S-imatrix
elements should exhibit rot=tional invariance—even for finite A¥!

Having specified how to treat the A-field we can now proceed to construet the
Hamiltonian. As a matter of convenience we choose to represent the Hamiltonian
using discrete light-cone quantization (DLCQ) [8,9] . Except for the longitudinal
ficld this has been done alrecady by A. Tang [10] for QED3s41 so that we do not have
to go into the details, For one flavor of fermion (b7 = fermion, d* = antifermion)
and one massive photon (¢t = transverse photon, ¢t = longitudinal photon) one

finds in 2 + 1 dimensions
H = Hy + ‘/ﬂlp + Vo flip + Vinst phot + ‘long, + Vinst ferm + Vivo (5
where
1 pLT 2
3 JN U 2 +
Hy = L ; A+ (—L—I> [al,_ ap + cljfcl{]

—~ 1 v ngmw :
+L; l'm,z—}- (———LI > [bjannﬁ‘dq“ I*u] .

$n L T
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| 1
+df 2o} 6@
+ (blmd“l l"ldl") (7,? *_ n) 6_1_1-{—!_(;_‘2} + /"4(‘-! y

Vo ¢ I Z Ap (opL  ny oy )
no flip = 2L [l.l.. o \/]_) - P N mo
- | (0.16)

(2) r + 4(2) ‘
{! *_qu” 5"+P."l ds m({‘mén-ﬂj m (wmd—- RH(SH-+ m,p + h.c. .

9
C“ '}
Vinsl phot = —7— Z {[/\ - 7”|” - (] [I’ A([ [wu(/—(u_

7l
“Latktmn

1 )
b“\ b,,«bsm bin — 3 u'jﬁ(/?!([‘qmdm}

.4

+ [k = m]l +n] - [(l:rk(l,g(l‘q’m_b_,u + b:gbifb\‘*md#u] 4+ e

- bjkdis(bimd_‘zﬂ k4 m + 71.]} ,

Viong = ——== -
o W‘L'L 3 L(’ n [)3/3 * {
LRAR bR LESS ('r). lz\:)

4

bjﬁbs,m d kd" '”) 6(L m+£ + 0 qud—-t‘ m‘sc /\+m} + h.c. |

N
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| Vinet form =
.‘ | inst ferm 471“[/ Z

8,p,9,m,n

a p % [b bsp + d:_,_,,_d,ﬂ] {{7* + qu 4+ 1)~ {p-nlg-m}

+ ap a+bsmd—-sn {p— 771' - (1 f N} w h C. (5.19)

+ “z“gbamd—m p =mlg+n} - {p —‘n|q +m}] + h.e

+ aziag[bjmbg,_,_ + d;"mdq,,] Ap+n|-g+m}+he

Here

pg = 2,4,6,..
koloamgn =1,3,5,...
pLyqL, kL ympyng =0, £10£2,...

S’t :T$l

. . |
{mln} = 65_,12 f—

™m
] (5.21)
[m|n] = 61(;),_1 el

N N 7 2 -~y -
Vyo represents the normal ordering terms which are part of the O(¢*) contribu-
tions to the self-energies. Since they arise from instantancous interactions tley are

independent of particle masses and thus vanish in P-V regularization [11] .

We leave the explicit construction of the P-V regularized Hamiltonian to the
Appendix. For perturbative calculations we will weight the contributions frem the

various electrons and photons (physical and P-V) with coefficients ¢ and r; which are
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later determined such that all unwanted terms vanish, E.g., the O(e?

) contributions

to the self-energy of a transverse photon with momentum p are (. = py (r/Ly))

2
5Etrans — € 1

2 dnl, p

2
DY
n

p—-n

2 ~ ~ A‘—I\ 2
m? (-1- + --‘--) + (211 By P nl)

P n p—n

)3-4—171 m?-{-ﬁ_’l

_omid(pi-ny)?

P n p—n

—
o
&)
S

~—

n order to obtain a finite results in the continuum limit we have to require S, ¢ = (.
In order to obtain a finite results in t} ti 1limit we have to requ s =0

This allows us to simplify the numerator by using the replacement (g — . (n/p)

—mi 4+ A p (In+1/p-n)"",

s trans
éEl’_

lLe.,

z,;z:;y Z

¢ ._‘2 2
477'1? + /\“’L——y———” - ")

o= {3~ (ko 555) (R -7a3) o]

X
o
e 1 2
S dnly op !
x

tmf+ ¥ [1 - 8% (1-3)

n(p —n) -’};—-( +;;~;;) {(ﬁ_}_-«}’)\l%)-—%m?]

+ 513;,_0"1; ’

where we have already separated the self-energy of a longitudinal photon

6Flong

4 )% /p?

e e L T L [ TR

2
2 ~ —~ i ‘
¥ - (% - ;*1?) [(M *Pl%) +m?]
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In the continuum limit the self energies of longitudinal and transverse photons must
be equal—otherwise rotational invariance is broken. To analyze this condition further

we transform this term into an integral

. 1 [*s)
6}1“‘11"&» _ 5Elong ) _‘_3_2__ _1_ /dd / d/\ 4777‘? + /\2[1 — 833(] - ﬂ)]
Ar? p L Na(l —a) —mi -k
’ (5.25)

—E,:;;Z it

aud our second P~V condition has to be 35, ¢ /m?¥ = 0.

We have performed similar caleulations for the on-shell sell-energy of an clec-
tron. Since this is a g,,mg,(' invariant quantity we can require that our calculation in
light-cone gauge and light-cone quantization reproduces the covariant result obtained
in Feynman gauge and 2 + 1 dimensional symmetrical integration. An alternative
approach-—which will be elaborated in more detail in the next section s to caleu-
late the one-loop corrections to the Compton cross section and compare with well

known results, Both methods lead to the same condition, namely

(j = () Z(J \/AJ =) . (H.20)
J

For practical calculations it is useful to reduce the number of PV conditions. To
achieve this one can add a counterterm to the Hamiltonian which cancels those
terms which are multiplied by (f\/;n'f and (j\/x;j in the self-energies of photons and
electrons respectively, At one loop this reduces—-—by construction -the number of
P-V conditions required. However, and this is a highly nontrivial result, numerical
calculations of the self-energies as well as the example in Appendix 5B show that
this is also true for higher loops, i.e., the second P-V particle is only necessarvy at
one loop. Once we avoid it by adding a suitable one-loop counterterm there is only

one P~V particle needed at two loops and most probably also for higher loops.
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There might be various reasons for this specia‘]‘&bclmvior al one loop. I'irst of
all there are ambiguities in how to treat normal ordering divergences which are of
O(e?) and contribute only to the one-loop self-energics. Secondly, power counting
in light-cone coordinates is different from the usual covariant power counting [12] .
One has to count separately powers in k) and 1/kt in order to properly estimate
the degree of divergence. Here it turns out that the strongest divergence (e.g., a
quadratic k divergence in 3 + 1 divergences) occurs only at the one-loop level. T'he

situation here is similar to scalar QIND in equal-time gquantization [13] .
54 Renormalization using noncovariant counterterms

QEDyyy is super renormalizable and only two graphs are superficially divergent
in Feynman perturbation theory (the one- and two-loop vacuum polarization arve
finite if gauge invariant regularization is used,).  However, the presence of terms
which break rotational invariance has forced us to introduce four PV particles (two
photons and two electrons), i.e., the Fock space content of the theory has inereased
considerably. Iven after calculating the one-loop counterterms by hand one has to
deal with one P-V photon and one P-V electron, i.e. the nnmber of degrees of
freedom still increases by a factor of four compared to the unregularized theory,

Furthermore practical calculations require in general some approximations which
in general lead to further violations of rotational invariance [14] . In this work we
deal only with those violations of rotational invariance which are induced by an
improper treatment of the high energy degrees of freedom (large &5, small @) if no
P-V regularization, or anything equivalent, is applied.  (The methods, which we
are going to develop for the Jatter problem, should, however, also be applicable for

approximation-induced effects.)

Using the light-cone power counting rules one shows that light-cone QIiD in

3+1 and 2+1 dimensions is renormalizable [11]. This implies that the vielations

-1
-1
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Caie s

of rotational invariance (which in our case are induced by an improper handling
of arbitrarily high energies) can Le compensated by a redefinition of terms in the
Hamiltonian, In general such a renormalization procedures can be quite lengthy
since, at least in principle, the e™ masses which appear in the kinetic energy and
in the vertex, the various e~ charges and the various photon masses can all require
different renormalizations, i.e., instead of three renormalization constants (m, A, €)
we would have to deal with nine (mygu, Mvertexs €flips €no flips Cinst phots Cinst ferm,
Mongs Atranss Avertex ). However, practical calculations have shown that violations of
rotational invariance in LC gauge occur only in two-point functions and there only

i a very specific form [15] |, namely

- NIAYS bl e e I 1 .
L=t t “ H - nm.' + oo e, (H.27)

for electron and photon self-energies respectively. ieothe deviations from the PV
regularized results which lead to rotational invariant observables can he paran
etrized by only two additional constants ¢, eo. The hurden of fitting nine renormal
ization constants has thus been reduced to itting five [16] . In practice ane adds two

extra counterterims
bjﬁ b + (/;;fﬁ(/,,!_,_

,
sHM = Sy,
" n
sn
(5.98)
.+
, ay ay
r(2) PR g
ol =2, “’/\mms
r 7
. . . . v cy D . ' ‘ .
to the Hamiltonian and adjusts &g, and 87, such that rotational invariance is

restored (this point will be discussed below). The next step, which is not necessary
in OBDyy, would then be the usual mass and charge renormalization [17] .

. ) o , \ e <\ 9 '
The constants &my;, and 67, arc determined as follows.  Fixing A7, is

rather easy: one diagonalizes the Hamiltonian (within some approximations like e.g.,

. . 9 . .
cutofl in Fock space) for a given A, and compares the physical masses (eigenvalues
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of the Hamiltonian) of longitudinal and transverse photons, 8A%,,. is then tuned

until these eigenvalues coincide.

For émf, two methods are suggested. The first method is based on the fact that
instantanecous e exchange becomes singular for small p* transfer (e.g., in Conp-
ton back scattering)., This is of course an unphysical singularity which has to be

:ancelled by noninstantancous ¢~ exchange. At tree level it is crucial for the cancel-
lation that the kinetic mass of an electron [m in Ho(3.7)] equals the vertex mass {in
in Vip(3.8)]. At one loop the interaction will renormalize myg, and myerex differ-
ently and once can easily convince oneself that the cancellation will be spoiled unless
different renormalization counterterms for myg, and mgepex are used. This defines
alveady the renormalization procedure, narnely tuning m, until finiteness of the
Compton back scottering amplitude for zevo pt transfer is achieved.

The second method uses the degeneracy of the positronium spectrum due to
rotational invariance. A glance at the Hamiltonian, Fq. (5.13) shows that, for zero
perpendicular momenta, an annihilation of an ¢ *¢™ pair into a transverse photon is
possible if and only if both have a parallel spin but not for the S = 1, 5. = 0 state,
Another annihilation process is possible via longitudinal or instantancous photons
but only from the 8 = 1, S, = 0 state. In the first case the vertex mass appears
whercas in the second it does not, For degeneracy of the S, = 0,41 states it s
important that both interactions have the same strength. Again this is achieved at
tree level by choosing miyg, = Miyertex but if loops are taken into account the condition
changes. Degeneracy of the S, = 0,41 states in the ground state of positronium can
thus be used as a renormalization condition,

The first method seems to be superior from a practical point of view, since it
requires to look at the e~ system only and not at e” ¢ty states as for the second
method. However, from a practical point of view we are interested in the positronium

spectrum, i.e., we diagonalize the Hamiltonian, The second methods thus requires
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ouly little eflort to Implement—namely, diagonalizing # for two spin configurations
and repeating this a few times (to it dmf iteratively), Furthermore, and this will
also be of practical importance, the renormalization constants will thus be evaluated
automatically to the same loop order and with the same approximations as the actual

positronium calculations are done.

5.5 Extension to 3+ 1 Dimensions

For those theories considered in this work (Yukawa and QED) an extension to
3+ | dimensions is straightforward. The only difference will be that more coeflicients
have to be renormalized and that there will be in general an infinite renormalization.

In practice the following steps have to be performed, Il one wants to vender all
loops covariant, i.e., even the one-loop graphs, using P~V there will be three PV

conditions for photons and clectrons, namely [18]

/(1,\'3,,(,.\‘-’) =0

/([/\2/\!/)((\:.) = () (H.29)

/(1,\'“)«\'“) log ,\"'/)(,\")) = ()

[t

which is awkward from a numerical point of view. Thus one should only use the
improved version of the P-V approach, where the one-loop counterterms arve con-
structed “by hand™ and only one P-V condition has to be imposed for higher loops.
The number of degrees of freedom will thus be the same as in a covariant approach
(c.g., euclidean integration) with P-V regularization. The method of noncovariant
counterterms might also be very useful, For example, if one uses a kinetic energy cut-
off further violations of rotational invariance are induced. The algorithim described

in Section 4 would automatically remedy this without further effort,
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The extension to nonabelian gauge theories is not as straightforward, Al meth-
ods discussed i this work violate local gauge invariance at least in intermediate
steps, For QIED this is not a problem since, e.g., the -V regularization preserves

. the Ward identitics. In QCD this is not the case and one has to add further gauge

breaking counterterms which restore gauge invariance [19]

56 Summary and conclusion

Naive light-cone quantization without carcful regularization violates rotational

1; invariance. In theories with a covariant Lagrangian we have demonstrated this by
i

g investigating the covariant structure of sell-cnergies. In the case of a noncovariand
ki

i Lagrangian (QIBD in the light-cone gauge) the Loreutz transformation propertios of
3 »] [ g‘! }‘1 i

o

Gireen’s functions are nontrivial and therefore possible violations of Lorentz invari-

atice are not obvious,

B
«

However, these effects must show up in the caleulation of physical processes. To

5

. study thenn it is convenient to select those processes which ave sensitive to violation
of its covariant structure as well as technically rather casy to deal with, In GED the
degenceracy of the triplet positronium state with parallel and antiparcallel spin as well
as Compton back scattering arve such processes, |

The violation of rotational invariance is not limited to one loop, althonught one
might expect this since normal-ordering ambiguitios arvise only in oune-loop sell-
energies. In fact, unless regularized properly, the normal ordering contributions lead
to violation of rotational symmetry, However, those terms are not the only source

. of violations of this kind as our explicit two-loop calenlations show. ‘T'he induced
divergences are less severe there, though.

We have discussed from two basic methods to restore rotational invariance, the
Pauli- Villars method and the method of noncovariant connterterins, Both methods

scem o require a large number of additional degrees of freedon or caounterterms,
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However, because of the specifie structure of rotational invariance violation in light
cone quantization—the worst problems are restricted to one loop and ouly certain
components of two point functions (the y+ component of the fermion self energy
and the L L — components of the vacuum polarization) are affected, This allows us
to optimize these methods considerably, We give analytic expressions for one-loop
counterterms. As a result the P.V. approach then requires only one ghost per pardele

to oflset the violations of rotational symmetry at higher loops,

The method of noncovariant counterterms requires only two additional coun-
terterms (compared to a manifest covariant approach), namely a mass term for
transverse photons and an additional correction to the fermion mass terin which
appears at spin {lip photon-clectron vertices, To fix the additional constants one has
to specify the renormalization conditions. This can be achieved by cousidering the
degenerate ground state of positroninm as well as the degeneracy of the longitudinal

and traneverse photons,
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5.7 Appendix 5A: The Pauli—Villars regularized Hamiltonian
for QED,,,

As discussed in the section about Pauli-Villars regularization, one Pauli-Villars

conditicn

/dmzpe(mz) =0 (5.30)

/d,\?pv(,\g) =0. | (7.31)

for electrons and photons respectively is sufficient to guarantec covariant regulariza-
tion in all calculations beyond one loop—provided all one-loop subgraphs have been
rendered covariant (e.g., by constructing the necessary one-loop counterterms). One

5.31) can be achieved by

can easily convince oneself that the sum rules (5.30) and (
introducing one additional electron and photon field respectively which are quan-
tized with the wrong metric. One way to do so in practice is to introduce an extra
factor of /=1 for all heavy photon vertices and another factor of /=1 for all heavy
electron pair creation and annihilation vertices. In addition the heavy electron has

to be quantized as a boson.

In practice this implies

HPV = Hy+ Vﬂ',p + Vo flip + Vlong + Vinst form + Vi loop (5.

v
—
o

—

where
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-+ z;: 7—7: L(_zl—-_.l__) T mz} [bjnbﬂ n + ds n ls n]
n (5.33)

1 i pLT 2 v
R () +A2} i+ 16

2
1 n|w 2 + r +
- E -— B l B Bsn+DsmnD3,"
+ n [( L.L) + l [ Bl - —]

v e Z (ap +iAp) {
Rip =
RNz pran VP

1 1 1\ ((2)
[m (bImb bf-mb'[n) + A/](BTmBl" BrmBln ] <7 - 7‘> b”'H’\”'

i1

')

(2)
611-{-;),1”

1 1
N + — e —
— [m ( ‘['mdln drmdh ) + AI(DTle.’l - [)lﬂD1ﬂ)} <'H'l 7]>

1 1 (2)
. + e
+ [,77,€(g+ dk _b dln)ﬂ/‘f(ﬁf?nf’rn Bl,"Dl,,)} (m + 77) bntm, ,,}

Tm

+ “h.c.” _
(5.34)

T 1 ap + iAg 2p;  ng omg
Vio flip = €4/ 7~ Z T T
Ly 2L, VP P
x {(bj}ﬂ_bsn + B+ BS”)‘Sn-HJ m - (djmdﬂn + I)jmnsn ) 5n+p m (5‘35)

+ (b+ d‘tsn + ZB+ Di-sn) 6§J‘,‘n+m} + “h.c.”
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Viong

\/mz 3/2 Ac,,+zAC,,{

skpm

% [833bom + B Bom] 55:1;‘,1: ~ [dfydsm + D Do) 5531,;,1& (536)

+ [b —-sm + 7B Dism] 6?2771.;)}

Vinst ferm = e? 47TL_L Z Z { + iAE)(all + i142)

8 pqmn

J

x (b5 bey + Bt Bay + diydan + DE, D)8
sm ptm

sm sm s
x ({p+mlg+n}={p—-nlg—m})
= (af +iA7)(ag + A7) dmsnbom + D 5n Bon)

x 62, mandp —ml = gt} + e

+ (af +iA] ) (ag + A4 (deawbam + 1D Biw)

X 6}(;2),+m+ﬂ({p —n|g+m} —{p—mlg+n})+ hc

.“

+ ((l£+ ZAP_)((LE_ + iAl)(bal’lb-‘”’ + B;tn]}*“ + (/+ (/‘v'ﬂ + I)F l)ﬁm)

samrsn sm

X bm PHgtn {p+n|—qg+m}+he
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+ 2182 (1 —») _ 1| —4m?
V; = a Z ke Z 4 [8" (1 p) IJ o —“m — M
1 loop irl, P Lo AHph m24n? m2+(pL—n)? v
p in ? - n - p—n
2 (b3 bsn + d,dsn)
« _ + 2 2% € snsn sn SR
-+ GEGI,_ -)AEAE’A -+ A +47FL_L§"; n

Z)‘Z—S[Tn2+ﬁi]'5+2ﬁlﬁL 1

mitnl XN4p mi4(Ri-pi)? p(p—n)
p M p n—p

2 2
X — AT o AP

+ “bYb — BT B,dtd — DD, m? — M2 |
(5.38)

The conventions are the same as in Egs. (5.13)-(5.19). ap, ‘42’ Cps Cl’ B, Dy
obey usual boson commutation relations, bsmdsn fermion anticommutation rela-
tions. “h.c.” indicates Hermitian conjugation only for field operators—not for -
numbers, i.e., ZIAE“ + “he)” = z'A,_, + 'éAl'_,". Of course H is thus not hermitian but this
should not influence unitarity below the production threshold for the heavy photons
and electrons. There is no instantaneous photon exchange term since those terms
cancel among the light and heavy photons [20] . The one-loop counterterms have
hbeen constructed such that they, together with one-loop corrections induced by #,
avoid all one-loop self-energies which would be proportional to [ dm=p(m?)v/m? or
JdX*p(A*)VAT in the continuum limit. Without the one-loop counterterms nore

Pauli-Villars particles would be necessary to make all such terms vanish,
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58 Appendix 5B: The two-loop self energy in Yukawap .

In light-cone pertubation theory (LCPTh) the strong divergences (quadratic in
3 + 1) occur at the one-loop level. Thus one might be tempted to expect that the
violations of rotational invariance occur also only at one loop. This is not true as
the following simple example shows.

We consider a massless fermion coupled to a massive scalar boson via a Yukawa
interaction term. As a specific example we evaluate explicitly the rainbow graph
(Fig. 5.1) contribution to the 7 component of the one-shell fermion self-encrgy. If
we choose vanishing py for the incoming electron, i.e., P, = 'p'j_/p+ = 0, it follows

from (2.2) that this component should be zero.

Sont

9-91 7009A6

Figure 5.1. Rainbow diagram contribution to the two-loop fermion self-cnergy in
the Yukawa model.

In order to separate one-loop and two-loop effects we allow the masses ol the
inner (A) and the outer boson (A) in the diagram to be different from cach other,
This also makes it easy to regularize the inner loop “sufficiently” while leaving the
outer loop unregularized for the moment. Applying LCPTh one casily finds [21] (up

to the same constants)

1
. 1;1' /) y f;
YUl = (O Dy, @ 1 1Loor, P o
e T s Tl M e e
0 -1 T ~r T

where

F=ptl-= D e h.40
py =p (1 —x) p =t (7.10)



and

1
1L00P,. \ _ M D 2 (1 —y)p(A?) .
1O0P (py) = 1 /dx / /d/\ ) (541)
0

Pr = yi=) ~ U=9)i-%)

Here we have already used [dA%p(A?) =0, fd/\zp(/\z)(/‘\2)1)l/2 =0 Lo cast [1Foor

into a rotationally invariant form [22] . Using [note that p; is an energy shell; see

Eq. (5.40)]
k2 k2 /\2
= (-2 [+ B (5.42)
- T
one finds
C/dD*kJ_/dD*q_l_f /dy /(!1\2/)(/\‘)
2 2
A 1 (5.13)

e Kdt k247 g2 +A? (k+q)?
o Ty T =0

dA2p(A?)
=CrPir(l =D - / A )
CnPt T = D) e 7y | (REpeDs 7

First and most important, the y1 component of & is nonzero and rotational invari-
ance is thus violated since p~ = 0. Secondly, the result is independent of the outer
hoson mass A; i.e., a Pauli-Villars regularization (with condition .("1)‘2/’(’\?) =
would have rendered tr (£v7) zero.

This is a rather typical result for higher loop graphs and implies the following.
Once one has (over-) regularized the short distance singularities so much that ouc
can handle the one-loop singularities in a rotationally invariant way (as in P-V) then
the (milder) higher loop singularities should be no problem any more if one uses the
same (over-) regularized versions of the theory there.

It is, however, not sufficient to add only a one-loop counterterm and add no

two-loop counterterms at all. although one might be ternpted to do so, because
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e.g.,in 2+ 1 dimensions the two-loop self-energy of a fermion is finite in a covariant

approach, this violates rotational invariance by a logarithmic divergence.
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6. Rotational Invariance in
Light-Cone Quantization

6.1 Introduction

Light-cone quantization might be a very valuable tool toward a better under-
standing of the strong interaction. The main advantages of the formalism are the
simple vacuum structure, the manifest boost invariance in the 2-direction and the

Hamiltonian formulation that leads to a very physical approach to field theory.

One of the major disadvantages of the formalism [1] (as for any Hamiltonian
form of dynamics) is its nonmanifest Lorentz invariance (here, rotational invariance).
Being not manifestly Lorentz covariant one still expects that physical observables (S-
matrix elements) exhibit the full Lorentz covariance of the underlying Lagrangian.
Since the verification of Lorentz covariance of the S-matrix in a noncovariant formal-
ism is in general rather tedious, it has become common practice to simply assume
covariance of the S-matrix in naive light-cone quantization [2] . This paper deals with
the problem of Lorentz covariance (in particular, rotational invariance) in light-cone

quantization.

A powerful test of rotational invariance is given by examining the angular distri-
Y g

bution of the decay products of a heavy scalar particle at rest, such as
o fT. (6.1)
Starting out with the light-cone quantized Yukawa mod¢: (see Chapter 5)
L =TGP —m)f +¢@+ )¢ +1F f6, (6.2)

we note that any deviation from a uniform ff distribution in physical S-matrix

elements would indicate a serious violation of rotational invariance.
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6945A1

Figure 6.1. Tree level matrix element for the decay o — ff. The dashed line
represents a heavy boson with mass X at rest: pt = p~,p; = 0 .The sum runs over
the fermion (mass m) spin labels sy, s7.

This section investigates the decay (6.1) at the one- and two-loop level. A dis-
cussion beyond one loop is important in order to decide whether self-induced inertia
terrns [3], which naturally arise from normal ordering of the Hamiltonian, could
cure the problem, Violations at higher loops would mean, in particular, that any
clever arrangement of self-induced inertia terms cannot restore a covariant answer
for physical S-matrix elements, since self-induced inertias are of second order in the

coupling.

We demonstrate an alternative treatment by adding counterterms to the La-
grangian respecting only those symmetries, which are manifestly preserved on the
light-cone, i.e., transverse rotations and boosts along the z-axis. The goal of this
paper is to construct them explicitly and show how rotational invariance can be
restored for physical S-matrix elements. To complete the discussion, in Section 4
we address the question of why light-cone quantization leads to incorrect results, if

naively applied.

6.2 Breakdown of Covariance at the One-Loop Level and

Addition of Noncovariant Counterterins

We begin our considerations with the decay of a scalar particle into a fermion

antifermion pair o - f[ at tree level. The corresponding matrix element squared is

(see Fig. 6.1)



>

6945A2

Figure 6.2. Fourth-order contributions to ¢ — ff. The ém insertion represents
the one-loop mass counterterm.

D IMPE =T ((Bg +mo)(—=4 + m)) . (6.3)

81.57

Overall light-cone energy conservation constrains the external momenta, leading to

. mZ _|__ q2
AN ——— L 6.4
gt (1l —qt) (6.4)

Note that, in order to allow for noncovariant counterterms, two different masses have
been introduced [4] . A vertex mass m,, appears in the numerator, and a kinetic
mass m, appears in P~ conservation and in all denominators associated with the

diagram [5] (see also previous chapter). Eqgs. (6.3) and (6.4) lead immediately to

2 2
2__‘ mv—-NI _ 2 ) 2
SSS_|M| = 2mq+(l-q+) 20 4 8my. (6.5)
197y

Obviously rotational invariance is obtained if and only if m, = m | i.e., no problems
arise in tree-level physics.

At the one-loop level the set of diagrams in Fig. 6.2 contributes to the decay. Note

that to order ¥* only interference terms between one-loop and tree level diagrams
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Figure 6.3. Typical contribution to the vertex correction of ¢ — f7.

contribute. As an example we calcvlate the contribution from interference between

a boson-exchange graph ai.d the tree graph (see Fig. 6.3) [6)

1
dit (1 — g+ — k)
— A4 2(1-¢€) .
laus-5: =" [ gy 0K o T e
0

Te (B = f+ m)(by + m)(=py + m)(=4 + m))

- mP(quki)? m?4(gitky)? — — mit(gatki)? A4k mi+4qd
p qF+EF T—qF k¥ I T—gF k¥ T T—¢+

(6.6).

Using the Brodsky trick [7] to include instantaneous fermion contributions, perform-

ing the trace, combining energy denominators and integrating over k, , we obtain

) 1
dk+ 0(1 — gt — k) 1
— 4 -
IBos.—Ex. =9 / 1673 (q+ + k+)(p+ - q+ — k+)k+ /dCY ,U'Q
0 (6.7)

where
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hET ((H + )1 —q* — k%) T k(1 - gt —kt)

o 3 o (1 —a) ’
M? =y 1-(—41# 1((q++k+)(1~q+—k+)+ (1—q+._k+))

m2+2 m2+2
+a(p"- o i )

Cgt 4kt 1—gt -kt

o omiigt N mPidg]
+(1-a) (P "‘”F"—F*m>

_ 2(4m2qt? —m? — ¢%)

(g7 + &+ = 1)g*

2(4m?qt? —dm?2¢t + m? + ¢%)

.

(1—q*)g*

C acquires terms from zero and linear order in the integration variable ki of the

Dirac trace. The linear terms give a contribution after shifting momenta. Since the

expression is rather lengthy we do not display it here.

Similar steps must be performed for all the other diagrams of Fig. 6.2. This

involves renormalizing the diagrams using minimal subtraction and performing the

integral over k* and « numerically. Then rotational invariance can be checked for

the total one-loop S-matrix element by computing the diagrams for two different sets

of external momentas:

Set (I): ¢ = %
(6.9)
Set (II): ¢t = 0

In both cases, we have chosen A = 1, m = 1/3/16. Since both sets obey Eq. (6.3)

and describe a scalar at rest, i.e., PT = P~ and P, = 0, the answer is supposed to

be the same for both of them, unless rotational invariance is broken.,

TR RURRA N TR TT T RT]

e
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Figure 6.4. Instantaneous contributions to the external self-energy.

For the asymmetry r, i.e., the result of the numerical integration for the difference

of set (I) and set (II), in in terms of
a~§—7ﬁ2|1\f|2 (6.10)
e '
185

we find r = 0.02a. That means rotational invariance is broken for physical S-matrix
elements at the one-loop level. In Appendix 6A we give details of this calculation. In
particular it is shown there that the piece which violates rotational invariance comes

from the instantaneous contribution in the external self-energy diagrams shown in

Fig. 6.4.

In order to keep our discussion as clear as possible, we restrict the number of
spacial dimensions to two in what follows. This enables us to disentangle the specific
renormalization procedure on the light-cone from the ordinary ones, since the Yukawa

model is superrenormalizable in 2 4+ 1 dimensions.

The remaining goal of this section is to show that the term that violates rotational
invariance is of the same form as the first term in the r.h.s. of Eq. (6.5). Thus,
by allowing independent renormalizations for m, and m one can restore rotational

invariance.

Using light-cone perturbation theory (LCPTh) rules one finds [8] for the graph
in Fig. 6.4
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dkdk*
1673

I(g*,q1) /
0

9 Tr ((p—f+m) (b2 + m)3y -( /1+m))
(1 — g+ — kH)k+(1 - ¢t) ( - 1+(qgljkly>

(6.11)

A change of variables k+ = (1 — ¢t , L=k + zq, , combined with use of

_ m? + g
(P-a)f =p~(1-¢") - (1 -q%) q+qi—qi=m’~’ (6.12)
and
2 4 1.2 2 L2 2 2 : )2 2(]
A *‘}‘J_+m +(qL+ky) ____§_+ m +(M+qn) +aqi (1 —x) (6.13)
@ l—=2 T l—z r(l — )
yields
1
/kldm () e
1673) Y m? B2 N
0 2(1—e) {m? == — {5 — gy ) (1 —0F)

where k = ki + gix. To write this in a more compact form, we define the ¢t and

1 independent function

1
deT
f(m, A) / 1673)
0

Discarding odd terms in ’}E_]_ , which do not contribute to the integral, we obtain

2~z
~A2(1 —¢) — m?z — ki)

z(l —a)m

dk (2 —2)m(l — ¢1) = (2 — &)m?¢t
I= | dz 6.16
0/"’ (167) (a1 ~ 2)m2 ~ X2(1 — 2) ~ m22 — R ) (1 —¢") o1
1_2q+f( A= (2o >f A) 6.17
= m,A) = — T (m (6.17)
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A similar calculation for the diagram that correspond to the anti-fermion self-

1 — 2 e n ‘\\ ) ']U

which contains the same function f(m,A). The total answer,i.e.,the sum of I and 7,

is
Lot = (4 - fI—';(Tl:—(IT)_) f(m, A). (6.19)

This result has the remarkable feature that it contains the same ¢+ dependence as the
term in Eq. (6.5) that violates rotational invariance. Hence the violation of rotational
invariance at the one-loop level can be cured Ly an appropriate renormalization
of m and my,, i.e., by using different bare values for m and m, in the light-cone

Hamiltonian,

6.3 Breakdown of Covariance at the Two-Loop Level

In this section it is shown that violations of rotational invariance in the light-cone
formulation are not restricted to the one-loop level. This statement is correct even

if the one-loop subdivergences are treated covariantly.

In order to constrain the number of diagrams that contribute to the S-matrix,
we introduce a second f('l‘l"l'l'liOﬂ flavor and bosons, which change isospin, into the
2+1 dimensional Yukawa model. However all couplings at fermion-boson vertices
are assigned differently, so that isospin symmetry is broken. The new interaction

Lagrangian is
Liny = gpnﬁnﬁb— + gppﬁp(b() + gnafingg + h.c. (6.20)

In this two-flavor model only the rainbow self-energy (Fig. 6.5) and the ladder vertex

correction (Fig. 6.6) contribute at order glz,p -gg" to the decay ¢g — pp. All other
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Figure 6.5. Two-loop rainbow self-energy contribution to o — 7. 6m,6@)m

denote the one- and two-loop self-encrgy mass correction, respectively, [ corresponds
o a counterterm which restores rotational invariance at the one-loop level.

g~ -
>

Pt

D e )

H4BA10

Figure 6.6. Two-loop ladder vertex correction to o — ff. Six timeorderings add
up to the covariant answer,

diagrams contribute with other combinations of coupling constants and must be

separately covariant, if covariance is assumed for all values of the couplings.

The rainbow self-energy contribution is shown diagramatically in Fig. 6.5. The
third diagram restores covariance at the one-loop level. Diagrams which contain
S, 8 m are one and two-loop mass counterterms, respectively.

As in Section 2, we consider the instantaneous contribution to the sclf-energy

diagrams in Fig. 6.7 separately from the rest. Table 6.1 shows the result of the
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Figure 6.7. Instantancous sclf-energy correction in two loops. Momentum labels
are assigned as indicated.

Table 6.1. Self-energy contribution to ¢ — ff in two loops. ag describes the
contribution from the instantaneous diagrams (Fig. 6.7), which violate rotational
invariance. ay is the result of the numerical integration of the residual self-encrgy
diagrams.

. Set aj as
(1) ~1.58 + 0.01 0.015 + 0.004
. (II) ~1.58 4+ 0.01 —0.135 4 0.002

Table 6.2. Result of the numerical integration of the ladder vertex correction to
o — ff (Fig. 6.6). A rotational invariant answer is obtained for both sets.

Set ay
(1) ~2.13 £ 0.01
(11) -2.13 4£0.01

numerical integration for both sets of momenta in (2.7). As in the one-loop case,
rotational invariance is violated for the instantaneous contribution to the external
self-encrgy diagrams.

The ladder vertex contributions yield the 6 time-orderings shown in Fig. 6.6. The

result of the numerical integration is given in Table 6.2.
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Figure 6.8. n + 1 loop rainbow self-energy correction.

Thus the ladder diagrams appear to be rotationally invariant by themselves, and
a possible cancellation of the noncovariant terms in the self-energy diagram cannot

occur. Details of this calculation are given in Appendix 6B (9] .

In the remainder of this section we want to demonstrate that the breakdown of
covariance, as in the one-loop case, can be cured by an appropriate renormalization
of m, and m. Since the calculation is similar to that of the one-loop case, we restrict

ourselves to an illustration of this procedure.

We start out with the matrix element in Fig. 6.8 iu two loops. In Appendix 6C it
is shown that the two-loop self-energy Iy contains a noncovariant piece proportional
to Cy*/pT (see also previous chapter), where C is independent of the incoming
fermion momentum [10] . Thus, after on-shell mass renormalization, one finds

+ gt

o' uyTu
Toir = [ ~— — C
el <p+ 'ﬂup+>

(6.21)
+ (b= m)i(P*) + (p° = m*) fa(p*) .
The instantaneous self-energy contribution of Fig. 6.7 becomes
. 1yt 1
I="Tr <(—K + m)§ ;)—1— — (p+ m)) C 2
+ ot +_
= 4~%C LA 4y:C ] (6.22)
pt pt

1
=44%C (2 - =
7 ( P*)’
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where we have set p = m for the external fermion in Fig. 6.7, and used the following

ytyt =0, kt + pt =1 and Tytu = 2p*.

An analogous calculation for the diagram which corresponds to the anti-fermion

self-energy, yields

~ 1
I =44°C (2 ) , (6.23)

so that the total contribution becomes

~ 1

I+ 1 =45%C (4 - ..__.__.______> . (6.24)
pt(l —pt)

Again we see that Eq. (6.24) has the same form as the piece that violates rotational

invariance in Eq. (6.5) , which means that rotational invariance can be restored by

tuning the vertex mass and the kinetic mass differently [11] .

6.4 Surface and Zero Mode Contributions

In the previous sections we have discussed the breakdown of rotational invari-
ance in light-cone quantization and described a way to cure the problem by adding
noncovariant counterterms. In order to make the discussion more complete, we will
investigate in this section the question of why rotational invariance is broken if light-
cone quantization is applied naively. The conclusion will be £hat naive light-cone

quantization omits important surface and zero mode contributions.

We start our discussion with the n 4+ 1 loop self-energy diagram in Fig. 6.8
in d dimensions and covariant perturbation theory. Since the theory is based on
a manifestly covariant Lagrangian, one expects for the n-loop self-energy 1y the

following structure after mass renormalization

vl = (b= h—m) TP =) +1p—a)* =m*|f3((p~ @)?) (6.25)
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where f must have a spectral representation

'

2y _ pi(s) o

l"(q )—— / dS F—:L;:TE (62())
30>0

with no poles for ¢* < 0. We discuss here only the zero mode effects induced by [P,

For f} the same considerations can be made yielding similar results [12].

One finds for the fJ* contribution to the self-energy in n + 1 loops

gy R RS S EY £ 6.20).

self = 2m)P ((p—q)2 —=mZ+10) (¢ = A2 + i¢)

Since problems are expected for the 4*-component only [13], we compute

1 Tr(y~ 1)) = P P~ - g + X fi(p =)
D self (2m)P qt ((p = q)% —m?2 +1e) (g% — A" +de)

+/ d¢ 1 -9
(2m)P ¢t (p—q)% —m® + e

where

was used.

It should be emphasized that even though light-cone variables have been in-
troduced, only algebraical steps have been performed so far, i.e., no breakdown of
covariance can have occurred at this point. The trouble occurs when the integration
over ¢~ is performed, in order to obtain LCPTh.

The first integral in Eq. (6.28) poses problems at the one-loop level, ie., f =1,
when trying to perform the ¢~ integration. This is because the integrand falls off
no faster than 1/¢~ for p* — ¢t = 0 or ¢* = 0. Whereas the first case should give

rise to a contribution of measure 0, we expect nonvanishing contributions from the
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surface term in the second case, since the denominators are multiplied by a function

which diverges for g% — 0.

What we encounter here is nothing else but the one-loop problem of the self-
energy which has been noticed by many authors 7, 14, 15].
However, in higher loops we expect no trouble arising from this term, To il-

lustrate this we use the spectral decomposition of Eq. (6.26) and write the first

contribution to Eq. (6.28) as

I = /dqf-_-qu, - i+ pi(s)
Iy = 8 (27{')1) I ({+ ((p___q)? ™ ~|.7'(;)((p—q)i2 —m? +?()

1
Nt
(6.30)

If sufficiently regular behavior for py(s) is assumed, the integrand falls off like ~
(1/¢7)? or faster, which means that surface terms do not contribute [16-18] .
The situation is different for the second integral in Eq. (6.28), however. Perform-

ing the ¢~ integration leads to [19]

1 ey 1 M(p—9)?) ! AP 1 ((p ~ @)%
- d dD 2 1 s - = 6 + _ .+ o 1' . )
2 / ! U —gf=mitic pt " =) (¢ —p)* +m? +ic

(6.31)
This is because for pt # ¢ the contour of the left-hand side can be chosen such

that its contribution vanishes. The rest follows {from

+

p n 2 D n 2
rl/qur/d(fdu-qui ip-qg7) 1 /‘ d7p i =9)7) (6.32)

gt (p—q)? —m?+ic F (p— q)* —m?* + i
0

(S

The point is that naive light-cone quantization omits the zero-mode contribution
on the right-hand side of Eq. (6.31) and thereby causes a violation of rotational

invariance. This also predicts that the piece that violates rotational invariance is
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always proportional to 1/pF, which is in perfect agreement with all our experiences

- at the one, two and three-loop level,
| Since the right-hand side of Eq. (6.31) does not depend on the outer boson

mass, we sce that using a heavy Pauli~Villars boson regulator instead of dimensional

regularization would have taken care of the problem [20]

To complete this section we want to list again the properties of the diagrams in
Fig. 6.8:
o It is very likely that noncovariances appear in any order of perturbation theory,
e The noncovariant piece is always p) and p~ independent and of the form
C(yt/ph).
¢ The noncovariant zero-mode contribution is independent of the outer boson
mass, which explains why a Pauli-Villars regulator plays an extraordinary role

among regulators, '

» Dimensional regularization is not sufficient, neither is the so-called “covariant

cut-off™ [21] .

Iiven supersymmetric theories suffer from this problem (see Appendix 61).

6.5 Summary and conclusions

We have shown that naive light-cone quantization leads to a violation of rota-
tional invariance in physical S-matrix elements. To do this we investigated the decay
of a heavy scalar particle at rest and observed a deviation from a uniform distribution
of its decay products, The analysis shows that the effect is not restricted to one loop
(An explicit example is given in Appendix 6C). Following the general arguments of
Section 4 one expecls a violation at any order in perturbation theory.

At the one- and two-loop level, we explicitly show that the problem can be

cured by tuning the vertex mass m, differently from the kinetic mass m. This
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procedure corresponds to adding noncovariant counterterms, which preserve only
the kinematic light-cone symmetries. That requires an additional renormalization

condition, compared to a manifestly covariant theory.

We suggest the decay of a heavy boson at rest because violation of covariance
is obvious in this case, Once the additional counterterm is fixed the statement
of renormalizability requires that all processes can be evaluated to the same order
in perturbation theory [22]without encountering any further violations [23]. To
complete our discussion, we investigated the question of why light-cone quantization
goes wrong if it is not applied carefully enough. We found that nonvanishing surface
contributions accompanied by a zero mode problem at one loop and missing zero
mode contributions at higher loop orders cause a breakdown of the covariant structure
of the theory. At this point it should be mentioned that the same problems are
expected to occur in gauge theories (in AT = 0 or any other gauge), quantized on
the light-cone. As far as practical methods are concerned, such as DLCQ [24] or
the Tamm-Dancoff procedure [3], additional violations of rotational invariance are
anticipated. This is because one is forced to work with a finite value of a cut-off
which by itself breaks Loreniz invariance. In this paper, we have discussed only

those violations of rotational invariance which survive the continuum limit.
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6.6 Appendix 6A

Using LCPTh theory for the self-energy contribution I,.p (Fig. 6.9), one finds

4 (- + _ et i
. A 2(1—€) Ol —q7 — &™)
Tsels = {5 /(”” T TR S =R
N Tr ((py + m)(py +m)(hy + m)(=f+m))

(6.33)
where p; = 0 and p* = 1. Note that an off-shell value for p~ has been assigned in
order to deal with the double pole. At the end of the calculation, p™ is taken on
shell. If one shifts variables to

~ Lt
}"J_ = k.L + qL T q+, (()34)

the Dirac trace can be reduced to the simple form AZ“’L + (', where
A=204miqt - 3m* + VD G T R g /\2)/kfr (6.35)

and (' contains terms of zero and linear order in the integration variable & of the
Dirac trace. This is correct only after terms are discarded which do not contribute

to the integral. The linear terms give a contribution after shifting momenta. Since

Q%
i’ ¥
P-4, P2 3 p,

= J—— — e

7-91 6945A14

Figure 6.9. Sell-energy diagram in one loop.
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the expression is rather lengthy we do not display it here. The EJ_ integration can
be trivially performed, yielding
’ 1
i - oy dit 0(1 — gt — k1) 1
= “Tom =37 (- Zad _mm)
i P — =3t -
i 0 g 1 (6.36)
;* T(—1+¢) T'(e)
! )( 1 - 14 p C
(0 -9ty + Ty
where
4 i Ok = gh)
il - L—gt
1;/! '
! « kt g A2 m? -+ (12l m? + q_ZL
o TG Ry R R
i (6.37)
3 Cew = 0.577... is Euler’s constant. The self-energy counterterm that corresponds to
. the diagramm in Fig. 6.10 is evaluated in a similar fashion. As in the self-energy
diagram (see Fig. 6.9) the instantaneous contribution is included by putting

_ . mP4dl
p; =P ——ﬁ (6.38)

on energy shell. ém is given by

L e [0, 1
ém = 5 /(lk d ki PR

w(py + m)u (6.39)

_ 'm2-+-k2 /\2+k2
(P - T “Tr*)

. X

with p; = 0, pT = 1 for the initial fermion. Note that it does not matter whether
the instantaneous contribution is included or not, since it is £ independent and

therefore gives a vanishing contribution in dimensional regularization.
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-dm
Pa

I —

801 B8045A15

Figure 6.10. One-loop mass correction to the self-energy.

Table 6.3. Total one-loop contribution to o — ff.

Set ay
(1) 0.048 4 0.2 104
(1) | 0.285 0.6 % 107°

Performing steps similar to those taken before one finds

,72 1
bm = —— dk+(1 — eln N2) (‘ - Ceul)
2m ¢

(6.40)
x (—(A2 —=m?) +m?(1 - kT) + ktm? — 2m?)

where

™m

9 2 /\2
N* = —k+(1 — k‘+) (p— - Tw———k:_ - -'k—+'> . (641)

Table 6.3 shows the result for the numerical integration. The result is that rotational
invariance is broken at the one-loop level. Numerically we find that the violating piece

arises from the instantaneous self-energy contribution.
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6.7 Appendix 6B

We start out with the two-loop rainbow self-energy diagram (Fig. 6.5). LCPTh

- yields

dk+dk+dk1ldk2l 1

GppY
Irainbow = i ;1P2/ + 1.4+ L.+ 24 p2 242
(1673) P1P2P3P ki kj (p—_"‘p+Pu_mq+ql>
1

Tr ((py + m)(pg + m)(ps + m)(p2 + m)(hy + m)(—f + m))
D,

Tr (s + m) (g + m)(—=6m) (P, + m)(py + M) (=f+m))

D, P3
' gt,0%, / dk*dk*dkl Ldki 1
(167%)% J piofpipfkiks (p— _minl, m”+¢11)
y P gt

Tr (g +m)(By +m)(—h +m)) gz Tr (B4 +m)Bh +m)i +m))
(PA},l —ky - 3‘2—;;&*) (1’[4,1 — k] —ky - ’"_ttxﬂu) (PA““ _omited, k;)

Py

BT (B m)(py + )+ ) Te (B4 m)(bmIh 4 )
(- 3 - 8) (- - 25) (o - 5 )

Py

+ ]ml'rraw )

(6.42)

where

2 4 2 2.4 2
) D, = (P"~ki_”“m+"pu—m+q']‘>

(P‘ — k] — k5 - m?+pyy _m +qi> (p—- _mi4ph mital k“>
2 + F 1
q



e (T _edl)
pf gt

po e A mPrdl (po mPaply, mi+dd
L U ¥~ ¥ - + T + M
2 q P4 q

and where Inirrow denotes the contribution from diagrams in the last two lines of

Fig. 6.5. The mementa are given by ‘
2 2
m° 4+ q
P = (1"'q+s)‘2‘ q+ la""‘]l)a

_mPtqi

p2 =p4 = (1 - q+ - k?—w A2 q_{_

— ki, —qL - ku) ,

) pT
ps = (1 By T NPT S ku)

2 2
m°+p -

N -—~—T—l$ ~ k', —qu ~/€1¢> )

Dy

5 Do
p3 = (1 —q+-——kl+’k'rj,;%:}?;’a"QL—ku—kzL>
2

and

K+ A
§=—
kl

_ kg N

8

? =
k2
= pi L +m’
M1
pt
P~ = )\% )

Note that the third diagram of Fig. 6.5 which restores covariance at the one-loop

level can be taken into account by setting py = (p; /p7)py and p; = (p; [p)nT
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This rule relates the bad component of the self-energy (vt p7) to the good component

(y~p}) and covariance is achieved by construction [25] .

The one-loop mass correction dm is given by
o P f)
(1 - k,j ym? 4+ m?

2 + , . 2 AN
A'Z_L + A‘Z (1 —_ ij-) (7712 — .lﬁ—lkf — F)

X dm = 63 '/‘dk2 dku(
0 ' -

The last two terms of Eq. (6.42) correspond to the two-loop mass correctlion 5 m,
Note that they are defined quasi-local, i.e., the §@m-subtraction occurs already at
the integrands before integration. This makes the expression suitable for numerical
integration.

The instantanecous éelf-energy contribution can be obtained by subtracting a
similar expression like Eq. (6.42) from I 4inbow, Where p7 is set on mass shell. The

two-loop vertex correction is computed in a similar way.
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6.8 Appendix 6C

In this section we show by explicit construction that the two-loop rainbow self-

energy in naive LCPTh contains a noncovariant piece of the form

+

“ ¢
05+ (6.43),

even when all subloops have been rendered covariant. C' is independent of the incom-

ing fermion momentum P. Since by assumption the 1-loop self-energy ]Eigf (Fig. 6.9)

is covariant, one should be able to express .Isle,f in the form (6.25), (6.26). In this

particular example we find
pmwﬁgmm/w(uwwmﬁ*mwm

m

pa(s) = gﬁﬂ (D) /d1 (2 —a)(r(x ))g"l(ﬂ(r(m)) (6.44)

m? — s

where 7(2) = (2(1 —2)s — (m?z + A%(1 - z)) was introduced. Q(D) is the volume

of the D-dimensional unit sphere, Thus in a covariant formalism the 2-loop rainbow

self-energy becomes

ﬂﬂ=‘7d [ %% (p1($) + (p = k- m)pa(s))

@mP (k2 — Nt ie)(p—fF—m+ie)((p—q)? — s+ 1¢) (6.45)

Naive LCPTh replaces () by 11(02), where

I(g) B ds
He ™ (2(27(’2)[)_1)2

f ((:)ﬁldf‘:)%( 1(8) + B +m)pa(s))  Ph+m)

- (ps= k_)7+1n2 KN - (po— kl)2+3 ki+,\2)
p Pt —k¥ % I A L T

114

Lo e e e oo R NN T TR R T TN T L T IR A A D T

R



ds * dktdP-2
z/ (2(2m)P-1)2 / (pt — k,+)2;‘€L+ (Pl(f‘) +  + 771)/;2(3))

(rF — &)
s —m?

B+ m)

1 1
- (pr—k1)?*+m? _ k2 472 - - (po—ky)?+s _ k2 +A2
p P —KF % p TR o

and

. _ k2 + /\2 m2+ —k 2
P = <p+~k,+,p _ M _ (pL —k1) ,m~kl).

kt (p+ —_ k+)

'The problem is thus reduced to finding the noncovariant piece of the one-loop self-

energy. This has been done [13] and the answer is of the asserted form of Eq. (6.43).



6.9 Appendix 6D: The two-loop self-energy in the supersym-

metric Wess—Zumino model

When dimensional regularization is used in the Yukawa model, there is no need
for a one-loop noncovariant counterterm if the boson and fermion masses are equal [26].
This observation could be of crucial importance for the light-cone quantization of su-
persymmetric field theories. In fact, in Ref. 27, it has been proposed to use the
(finite [28]) N =4 supersy‘mmet.ric Yang-Mills theory as a regularized extension of

light-cone QC'Dj4y.

Compared to normal theories with similar interactions, supersymmetric theories
have a less singular UV-behaviour. Since part of the problem with the violation
of rotational invariance is connected with the loop regularization of light-cone sin-
gularities, one might hope that SUSY theories are less troubled by noncovariant
self-energies. Technically, the improved UV-behaviour arises from cancellations be-
tween various diagrams related by SUSY transformations. Perhaps something similar
happens with the noncovariant self-energies in light-cone quantization. As mentioned
above this is indeed the case at the one-loop level if one uses dimensional regular-
ization in the transverse coordinates. In order to find out whether such a behaviour
persists in higher loops, we will investigate the two-loop self-energy of a fermion in

the SUSY Wess-Zumino model [29]

1 1 9 1 T
L= 5 (OuAY ~ 5 (0 B) — 5700

1 0,0 1 g ] J—
—sm AT - 3 m*B* — 3 ma
B (6.46)

- gmA(A2 + 133) — égz(A’”) + B'z)z

“

—igP(A - By,
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S <
pdiiiiacsk-gniiip i

where 1 is a Majorana spinor and A and B are, respectively, a scalar and a pscu-
doscalar field, The (unsubtracted) one-loop self-energies for bosons and fermions in

this model read
Sr=p0p%) Sp = 2p% f1(p?) (6.47)

where

1 -z
=c [ dP-? /d - , 6.48
p c/ kL v 1-T)—~mz-/v_2L+ie (6.48)

(c is some constant). Performing an on-shell mass subtraction one finds [30]
9
f2(p%)

m (6.49)
Sp=2 [(0* —m*) L(p*) + (0" =~ m?) f2(0)]

S = (p—m) (%) + (0 —m?)

where

L(P*) =m

2 £(5%) = fifm?) (6.50)

p? — m#
Inserting these one-loop corrections into the one-loop sclf-energy yields the nested
(rainbow-type) contributions to the fermion self energy at O(g?) [31]

. s [ r ! (b= K) [l — k)?)
Llu my — & 1.),'
(") C/d : k? —m?+1ic (p—k)? ——ml + 1€

) 1 206~ F) [i(#°
Ty = > D'7
EP(p") ‘"/d Aki’-—mz—{—ie (p_k)'z—m?—i-z'e

! ‘ L 2p= R L=k
\.,a "y — & Dy,
(") C/d L P S Ejs B

| - N .,, ‘,2
EQ?}(p/t) — ?/de v 1 2(15 /)fu(" )

2 —m? +ie (p—k)? —m?+1e
where ¢ is some constant.
5% and £° correspond to insertions of 1P into the fermion and boson line,

respectively.
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l; Following Section 4 we substitute in the numerator of the y* component

3 . .2
Ela 22“ . k= —.&2 — 77&2 ’\:_L + 7712
b .

ko kTt

(p=k)? =m® | (ps k1) +m? o '
! 1 26, - g p—k)" —m pL—FkL)" +m
FRET e T T T o)

As we have shown there naive light-cone quantization (NLCQ) simply neglects the

first term thus omitting

Dy Y . 2
ARI0 = _ayt 7k fillp—k)%) _ p+/de f1(k?)

k+ (p — k)2 —m? k% —m?
Elb — Dk
A /d /c2 —m?
) (6.53)
| k)
AEQa____U_E__) / sz f2
pt kK —m?
2 i p, f2(k*)
AT =2 =y /lkk?_mz.

One can easily verify that the AY terms arising from fp-insertions cancel whereas
this does not happen for fi. Thus NLCQ falls short of the correct result by an

amount

ALNLeQ = ;C— Y /dDA k) = # 0. (6.54)

k2 —m?

In the beginning of this appendix we raised the hope that SUSY theories are free of
the zero mode problem. Unfortunately this turned out to be false as Eq. (6.54) shows.
This means that if one want to use SUSY theories as a regulator for other theories one
still has to preregulate them in such a way that there are no noncovariant terms or
use some other technique (e.g., noncovariant counterterms) to compensate for AX,
This might limit the practical use of SUSY regulators in light-cone quantization

considerably.
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7. Summary and Outlook

In the first part of this dissertation a new algorithm for the automatic compu-
tation of Feynman diagram amplitudes is presented. The method, which is based
on light-cone perturbation theory (LCPTh), is explored and tested for two- and
three-loop calculations in QED. The amplitudes are constructed automatically and
éxplicitly, given just the photon connections of the corresponding diagrams. The
extension of the algorithm to higher loops is straightforward [1]. In contrast to usual
techniques, where single Feynman diagram amplitudes get renormalized, this pro-
cedure constructs renormalized amplitudes of sets of Feynman diagrams only. This
simplifies the renormalization procedure significantly since those sets can be chosen
such that ultraviolet divergences, associated with wavefunction renormalization can-
cel between diagrams of the same set. Also the infrared behavior is improved in this
case, since wavefunction counterterms generally induce artificial infrared divergences.

Mass- and coupling constant renormalization must be carried out the usuai way.

In contrast to standard covariant procedures, light-cone field theories involving
fermions require further renormalization [5]. In the case of the quadratically diver-
gent one-loop fermion self-energy, this problem has been noticed by many
authors [2, 3, 4]. In this dissertation it is shown that additional renormalization
is necessary for an infinite number of quadratically divergent LCPTh diagrams at
the one-loop level. Also the two-loop order induces additional divergences. This
happens even if one-loop subdivergences have been removed consistently from the
formalism. It is most likely that additional control of the renormalization procedure

is necessary at any order in perturbation theory.

One of the main results of this thesis i1s that the additional divergences of L.CQ
can be identified with noncovariant terms in light-cone quantization. It is shown that

those terms lead to observable effects, unless further renormalization is invoked. All
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noncovariant terms that we have encountered in the Yukawa model always had the

structure

+
o)

pt’
where C' is independent of the external momenta. In QED we find an additional
noncovariant term in the 1, L -component of the vacuum polarization. This sur-
prisingly simple structure greatly reduces the number of noncovariant counterterms
necessary for the restoration of Lorentz covariance. In the case of QED the burden
of fitting nine constants is reduced to just two (one for the v*/p* term and the other

one for the vacuum polarization).

Another part of this dissertation has been devoted to the analysis of perturbation
theory expansions in light-cone field theories. In order to avoid possible subtleties
of the quantization procedure for small z, we derived the light-cone formulation of
Feynman amplitudes by integrating over light-cone energies. The result shows that
naive light-cone quantization may omit important surface and zero mode contribu-

tions. The analysis recovers the noncovariant term v+ /p*.

Another objective of this dissertation was to lay down some of the groundwork
which is necessary for upcoming nonperturbative studies. The noncovariant countert-
erms constructed in this work are applicable also for nonperturbative calculations.
An essential step is the derivation of renormalization conditions necessary for the
adjustment of the additional counterterms. In the case of QED (2+41) (the general-
ization to QED (3+1) is straightforward) the Hamiltonian, consistent with covariant

and gauge invariant perturbation theory was constructed explicitly.

In the following we would like to outline some of the future challenges in nonper-
turbative light-cone Hamiltonian dynamics. LCPTh provides a useful source of intu-

ition for nonperturbative methods such as DLCQ or the light-front Tamm-Dancofl
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approximation. The connection between nonperturbative questions, i.e., an eigen-

value problem

(E — Ho)¥ = V¥ (7.1)

(the free problem is defined by HoWo = EpW¥g) and the language of a perturbation

expansion is given by

1 ! 1
= /
V=0t g VeV eoTm

V)W, (7.2)

since each term in Eq. (7.2) presents a given order in perturbation theory and al-
lows for a depiction in terms of LCPTh diagrams. Nonperturbative Hamiltonian

formulations often use an effective version of Eq. (7.1), such as
(E'—-—H())lpf?:'/cffq/f-ff (7.3)

in order to compute physical observables within a certain subspace of Hilbert space
(such as eTe™ or ¢g for fermion-antifermion subspaces in QED and QCD, respec-
tively). The corresponding effective potential V, ;5 is of infinite order in the coupling
constant since Fock states of arbitrarily high particle content can couple to the sys-
tem under consideration. Most methods, however, such as a finite Tamm-Dancoff
truncation, approximate Vgss by a renormalized kernel V,,ff which is of finite order
in the coupling only. The solution of the corresponding integral equation iterates
those kernels ad infinituum and generates LCPTh diagrams up to infinite order in
perturbation theory [see Eq. (7.2)]. The problem is that these diagrams are highly
reducible and form a nongauge invariant set thereof. In gauge theories in light-cone
gauge this results in k&t singularities, due to incomplete cancellations of its gauge
terms.

A possible solution of this problem might be the addition of nongauge invariant

counterterms to \78” which could simulate the effect of missing higher-order kernels.
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However, sume of those counterterms are expected to be nonlocal as well as of higher
order derivative structure. This could give rise to run-away solutions which would

aggravate the numerical treatment of the problem.

With the introduction of n counterterms, n additional parameters c1,cg, - ¢
have been introduced into the formalism. If one wants to go beyond the construction
of phenomenological models those parameters‘need to be determined by a set of n

constraints such as
< 45| fi(er, ez, e)ie >=0 (7.4),

where |i; > corresponds to eigenstates to (7.3) and k = 1,---,n . The challenge is to
construct the functions fj, kv= 1,.-+,n explicitly. Possible constraints could be given
by current conservation, rotational invariance, and a zero mass for the photon (in
case of QED). Note that |¢i; > implicitly depends on ¢;,7 = 1,.--,n and is of infinite
order in the coupling [6] . Thus Eq. (7.4) would determine the new parameters to
all orders in the coupling. Another challenge is given by the consistency check for
the obtained set of constants ¢i,ca,: - cn. A possible way could be the consistent

overdetermination by means of further constrains.

The last challlenge to be mentioned in this context concerns the scale-dependence
of computed quantities in nonperturbative methods. Scale dependencies are gener-
ally introduced through ultraviolet counterterms in the construction of the effective
renormalized kernel. At the fixed point of the theory, the parameters can be adjusted
(with respect to the scale) such that physical observables are scale independent. In
cases where the fixed point of the theory lies in the weak coupling regime, the per-

turbative B-function should be recovered.

The central objective of this work was the study of LCPTh as a competitive tool
for standard Feynman diagram calculations. The main challenge here is to generalize

the algorithm for non-Abelian theories. One might be able to reduce the labor associ-
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ated with the computations of one and two-loop processes in QCD and the Standard
Model considerably. Examples of interest are the two-loop corrections to top quark
decay, QCD-corrections to charm and beauty production in deep inelastic scattering,

as well as the higher loop corrections to the various spin-dependent parton distribu-

tions [7]. In particular the last example suggests the use of light-cone quantization,
since this is the most natural frame to discribe structure functions. Computing
higher-order corrections to these spin-dependent structure functions could also help

to clarify whether the Burkardt-Cottingham sum rule [8] is violated.

Finally, we present a list of statements concerning renormalization which have

been developed in this dissertation. This list serves as a glossary and provides the

reader with the necessary orientation of the results in this work.

e Alternate Denominator (See Appendix A in Chapter 4.) is a method in-

troduced in Ref. [9] which is designed to locally cancel quadratic divergences
as well as perform the mass renormalization of fermion self-energies. In or-
der to ensure a consistent description for general fermion self-energy diagram
amplitudes, the method must be modified: Contributions where instantancous
fermions are adjacent to the self-energy from the right and left must be excluded
from the alternate denominator subtraction. In addition, QED in A* = 0
gauge requires further restriction to the g,, piece of the photon propagator

only.

o Counterterm. In addition to counterterms which are necessary in a man-
ifestly covariant theory, LCQ requires additional counterterms. This is gen-
erally the case even for superrenormalizable theories (see also noncovariant
structure of LCQ and Superrenormalizable Models). For the construction of
those counterterms see verter mass, kinetic mass, alternate denominator, null-

sublraction.
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e Dimensional Regularization (See Appendix C in Chapter 4.) can be intro-
duced in LCQ by altering the dimension of perpendicular (with respect to the

z-direction) degrees of freedom.

; o DLCQ see Theta function regulators in DLCQ.

e Gamma-plus over p- plus terms. (See for example Section 5.4.) In the case
of the Yukawa model the noncovariant structure of the theory (see Rotational
Invariace) is restricted to terms proportional to y+/pT. The same statement
applies for Féyuman—gauge QED diagrams which contain no vacuum polariza-
tion contributions. Noncovariant terms of this kind are due to an improper
treatment of surface and zero-mode contributions in LCQ (see Surface and

Zero Modes ). They can result in quadratic and logarithmic divergences in LC

field theories (see Quadratic Divergence).

o Jellyfish Problem. (See Section 4.2.) Jellyfish diagrams are defined by in-

serting n (n > 0) photons into the one-loop fermion self-energy. In QLD

in Feynman gauge jellyfish diagrams give rise to a quadratic divergence (see
Quadratic Divergence). In the continuum version of QED in A™ = 0 gauge the
problem is reduced to n = 0 (which is actually just the fermion self-energy).
However, the problem can also occur in AT = 0 gauge since most regular-
izations of the associated gauge singularity (see light-cone gauge singularity)
reduce the small * behavior of the photon propagator to that in Feynman
gauge. Independent of that, quadratic divergences are unavoidable in A% =

if questions such as current conservation are investigated. For the removal of

the quadratic divergences in the jellyfish graph see Null-Subtraction.
o Light-Cone Gauge Singularity. See Section 4.3.
o Kinetic Mass. See vertex mass.
e Noncovariant Structure of LCQ. See Rotational Invariance.

128

AL Lo ARSI T U U L A A (L LR R I A LI B UL I A R U B M\" T (R NS L IRV VIURS T rfw SR



o Null Subtraction (See Section 4.2.) is a method which locally subtracts

quadratic divergences in n-photon jellyfish diagrams (see jellyfish problem).

The subtraction term is given by setting the total light-cone energies and perp-

momenta for the bad component of n-photon jellyfish (sub-) diagrams to zero.

. ¢ Pauli-Villars Regularization. (See for example Section 5.2.) LCPTh of
QED and the Yukawa model is equivalent (at least to two Joops) to ordinary

covariant Feynman perturbation theory if Pauli-Villars regularization is used.

However, unlike regularization in a covariant formalism, where only one Pauli-
3y ] o

Villars photon and fermion are necessary, three ghost particles of each type
must be introduced in LCQ. If noncovariant terms (see also Gamma-plus over

p-plus) are consistently removed at the one-loop level, higher loop contributions

require only one Pauli-Villars particle for each type. Pauli-Villars regulariza-

. tion plays an extraordinary role among regulators in LCQ.

e Quadratic Divergence. (See for example Section 4.2.) LCQ involving
fermions give rise to two kinds of quadratic divergences (QD).

1. QD which cancel when all light-cone time-orderings, corresponding to a I'eyn-
man diagram, are summed. Those divergences are due to the lack of absolute
convergence in Feynman integrals. A similar problem occurs in ordinary time-
ordered perturbation theory. A regulator consistent with covariance is essential
in this case in order to recover the correct continuum answer. An example is
given in the amplitude of diagram 6 in Chapter 4.

2. QD associated with a noncovariant structure of LCQ (see Rotational Invari-
ance). For the removal of quadratic divergences see Alternaie Denomainator,
Kinetic Mass, Null-Subtraction, Tensor Method, Vertex Mass, Pauli-Villars

Regularization.

e Rotational Invariance. (See for example Chapter 6.) Unless surface-—and

zero-—mode contributions (see surface and zero modes) are treated properly,
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LCQ violates rotational invariance for physical S-matrix elements. Those rota-
tions mix longitudinal with perpendicular degrees of freedom. The problem is
not expected to occur for scalar theories with energy-independent interaction

vertices (see also Gamma-plus over p-plus terms).

Self-Induced Inertia (See Section 6.1.) terms arise from normal-ordering of
the Hamiltonian and can be interpreted as mass counterterms which naturally
arise in LCQ. Their treatment is a regulator dependent. In Pauli-Villars reg-
ularization fermion self-induced inertias vanish in the case of QED and the
Yukawa model, This is due to their independence on the photon (or boson)
mass. Self-induced inertias are of second-order in the coupling and do not give
rise for a consistent renormalization in higher loops.

Superrenormalizable Models. (See Chapter 1.) LCQ of superrenormal-
izable models such as QED 2 4+ 1, QCD 2 4+ 1 or the Yukawa model in 1 41
dimensions show divergent structures unfamiliar to manifestly covariant formu-
lations. The cause is given by a breakdown of parity invariance in naive LCQ,
which is due to an improper treatinent of surface and zero mode contributions

(see Surface and Zero Modes).
Supersymmetry. (See Appendix D in Chapter 6.) The supersymmetric
extensions of the Yukawa model, known as the Witten-Zumino-Witten model,

does not avoid the necessity of noncovariant counterterms (sec counterterms).

Surface and Zero Modes (See Section 6.4.) can give rise Lo nonzero con-
tributions when performing the light-cone energy integration in Feynman in-
tegrals, Surface and zero modes are omitted in naive light-cone quantization
which can give rise to noncovariant structures of LC field theories (see rota-
tional invariance). This happens when a cancellation of light-cone energies in
the numerator and denominators of Feynman diagrams occurs such that all

poles lie either in the upper or lower complex-plane.
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¢ Tensor Method. (See Section 4.2.) In the case of the fermion self-energy in
the Yukawa model and QED in Feynman gauge the associated quadratic di-
vergences (see Quadratic Divergence) can be consistently removed by relating

the bad component of the self-energy to its good component. Lorentz invari-

ance (see Rotational Invariance) is achieved by construction. The quadratic
divergence is avoided in this case. In addition the usual mass renormalization
must be carried out, In QED in AT = 0 the application of the tensor method
is rather restricted due to the more complicated Lorentz structure of the sell-
energy. However, in the one-loop self-energy the tensor method can be used

when restricted to the g,y piece of the photon propagator only.

e Theta function regulators in DLCQ. (See Section 4.4.) Theta function

regulators limit a function of the total light-cone energy of Fock states. Those
regulators generally respect the kinematic symmetries of light-cone quantiza-
tion but violate rotations which mix longitudinal and transverse degrees of
freedom. Theta function regulators do not recover correct continuum answers

for general perturbative processes, unless noncovariant counterterms are used.

e Vertex Mass. In the Hamiltonian formulation of QED or the Yukawa model
the vertex mass of the electron (positron) is defined as the mass appearing in
the helicity flip vertex of the theory. In contrast, the kinetic mass appears in
the free kinetic energy of the fermion. Whereas the (regularized) bare values
for vertex mass and kinetic mass coincide in a manifestly covariant formulation,
they must be tuned differently in LCQ in order to offset violations of rotational

. invariance (see Rotational Invariance and Gamma-plus over p-plus terms).
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