2,747 research outputs found

    Higgs look-alikes at the LHC

    Get PDF
    The discovery of a Higgs particle is possible in a variety of search channels at the LHC. However the true identity of any putative Higgs boson will at first remain ambiguous, until one has experimentally excluded other possible assignments of quantum numbers and couplings. We quantify to what degree one can discriminate a Standard Model Higgs boson from "look-alikes" at, or close to, the moment of discovery at the LHC. We focus on the fully-reconstructible "golden" decay mode to a pair of Z bosons and a four-lepton final state, simulating sPlot-weighted samples of signal and background events. Considering both on-shell and off-shell Z's, we show how to utilize the full decay information from the events, including the distributions and correlations of the five relevant angular variables. We demonstrate how the finite phase space acceptance of any LHC detector sculpts the decay distributions, a feature neglected in previous studies. We use likelihood ratios to discriminate a Standard Model Higgs from look-alikes with other spins or nonstandard parity, CP, or form factors. For a benchmark resonance mass of 200 GeV/c^2, we achieve a median expected discrimination significance of 3 sigma with as few as 19 events, and even better discrimination for the off-shell decays of a 145 GeV/c^2 resonance.Comment: 39 pages, 55 figures, typos fixed, figures added, and minor clarification

    Higgs Physics at the Large Hadron Collider

    Get PDF
    In this talk I will begin by summarising the importance of the Higgs physics studies at the LHC. I will then give a short description of the pre-LHC constraints on the Higgs mass and the theoretical predictions for the LHC along with a discussion of the current experimental results, ending with prospects in the near future at the LHC. In addition to the material covered in the presented talk, I have included in the writeup, a critical appraisal of the theoretical uncertainties in the Higgs cross-sections at the Tevatron as well as a discussion of the recent experimental results from the LHC which have become available since the time of the workshop.Comment: LateX, 12 figures, 15 pages, Presented at the XIth Workshop on High Energy Physics Phenomenology, 2010, Ahmedabad, Indi

    Disentangling Dimension Six Operators through Di-Higgs Boson Production

    Get PDF
    New physics near the TeV scale can generate dimension-six operators that modify the production rate and branching ratios of the Higgs boson. Here, we show how Higgs boson pair production can yield complementary information on dimension-six operators involving the gluon field strength. For example, the invariant mass distribution of the Higgs boson pair can show the extent to which the masses of exotic TeV-scale quarks come from electroweak symmetry breaking. We discuss both the current Tevatron bounds on these operators and the most promising LHC measurement channels for two different Higgs masses: 120 GeV and 180 GeV. We argue that the operators considered in this paper are the ones most likely to yield interesting Higgs pair physics at the LHC.Comment: 20 pages, 7 figures; v2: to match JHEP versio

    Measuring the Higgs Sector

    Full text link
    If we find a light Higgs boson at the LHC, there should be many observable channels which we can exploit to measure the relevant parameters in the Higgs sector. We use the SFitter framework to map these measurements on the parameter space of a general weak-scale effective theory with a light Higgs state of mass 120 GeV. Our analysis benefits from the parameter determination tools and the error treatment used in new--physics searches, to study individual parameters and their error bars as well as parameter correlations.Comment: 45 pages, Journal version with comments from refere

    Strong normal-incidence infrared absorption in self-organized InAs/InAlAs quantum dots grown on InP(001)

    Get PDF
    International audienceInAs self-assembled quantum dots in InAlAs matrix grown on InP001 substrates have been fabricated using Stranski-Krastanov growth mode. A strong in-plane polarized intraband absorption in the 10.6-20 m wavelength region has been observed and ascribed to a transition from the ground electron state to an excited state confined in the layer plane along the 110 direction. The absorption at normal-incidence reaches 7.8% for ten layers of n-doped quantum dots. The oscillator strength of the intraband transition is comparable to that achieved in quantum wells for a conduction band intersubband transition. The dependence of the intraband absorption on carrier concentration and temperature suggests a quantum-wire type confinement potential

    LHC/ILC Interplay in SUSY Searches

    Full text link
    Combined analyses at the Large Hadron Collider and at the International Linear Collider are important to reveal precisely the new physics model as, for instance, supersymmetry. Examples are presented where ILC results as input for LHC analyses could be crucial for the identification of signals as well as of the underlying model. The synergy of both colliders leads also to rather accurate SUSY parameter determination and powerful mass constraints even if the scalar particles have masses in the multi-TeV range.Comment: 5 pages, contribution to the proceedings of EPS0

    Revealing the electroweak properties of a new scalar resonance

    Get PDF
    One or more new heavy resonances may be discovered in experiments at the CERN Large Hadron Collider. In order to determine if such a resonance is the long-awaited Higgs boson, it is essential to pin down its spin, CP, and electroweak quantum numbers. Here we describe how to determine what role a newly-discovered neutral CP-even scalar plays in electroweak symmetry breaking, by measuring its relative decay rates into pairs of electroweak vector bosons: WW, ZZ, \gamma\gamma, and Z\gamma. With the data-driven assumption that electroweak symmetry breaking respects a remnant custodial symmetry, we perform a general analysis with operators up to dimension five. Remarkably, only three pure cases and one nontrivial mixed case need to be disambiguated, which can always be done if all four decay modes to electroweak vector bosons can be observed or constrained. We exhibit interesting special cases of Higgs look-alikes with nonstandard decay patterns, including a very suppressed branching to WW or very enhanced branchings to \gamma\gamma and Z\gamma. Even if two vector boson branching fractions conform to Standard Model expectations for a Higgs doublet, measurements of the other two decay modes could unmask a Higgs imposter.Comment: 23 pages, two figures; v2: minor revision and version to appear in JHE

    Higgs Physics: Theory

    Full text link
    I review the theoretical aspects of the physics of Higgs bosons, focusing on the elements that are relevant for the production and detection at present hadron colliders. After briefly summarizing the basics of electroweak symmetry breaking in the Standard Model, I discuss Higgs production at the LHC and at the Tevatron, with some focus on the main production mechanism, the gluon-gluon fusion process, and summarize the main Higgs decay modes and the experimental detection channels. I then briefly survey the case of the minimal supersymmetric extension of the Standard Model. In a last section, I review the prospects for determining the fundamental properties of the Higgs particles once they have been experimentally observed.Comment: 21 pages, 15 figures. Talk given at the XXV International Symposium on Lepton Photon Interactions at High Energies (Lepton Photon 11), 22-27 August 2011, Mumbai, Indi
    corecore