1,867 research outputs found

    Dynamics of Spreading of Small Droplets of Chainlike Molecules on Surfaces

    Full text link
    Dynamics of spreading of small droplets on surfaces has been studied by the molecular dynamics method. Simulations have been performed for mixtures of solvent and dimer, and solvent and tetramer droplets. For solvent particles and dimers, layering occurs leading to stepped droplet shapes. For tetramers such shapes occur for relatively deep and strong surface potentials only. For wider and more shallow potentials, more rapid spreading and rounded droplet shapes occur. These results are in accordance with experimental data on small non - volatile polymer droplets. PACS numbers: 68.10Gw, 05.70.Ln, 61.20.Ja, 68.45GdComment: to appear in Europhys. Letters (1994), Latex, 12 page

    Induced superconductivity in noncuprate layers of the Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} high-temperature superconductor: Modeling of scanning tunneling spectra

    Full text link
    We analyze how the coherence peaks observed in Scanning Tunneling Spectroscopy (STS) of cuprate high temperature superconductors are transferred from the cuprate layer to the oxide layers adjacent to the STS microscope tip. For this purpose, we have carried out a realistic multiband calculation for the superconducting state of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (Bi2212) assuming a short range d-wave pairing interaction confined to the nearest-neighbor Cu dx2y2d_{x^2-y^2} orbitals. The resulting anomalous matrix elements of the Green's function allow us to monitor how pairing is then induced not only within the cuprate bilayer but also within and across other layers and sites. The symmetry properties of the various anomalous matrix elements and the related selection rules are delineated.Comment: 9 pages, 2 figures. Accepted for publication in Phys. Rev.

    Origin of electron-hole asymmetry in the scanning tunneling spectrum of Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We have developed a material specific theoretical framework for modelling scanning tunneling spectroscopy (STS) of high temperature superconducting materials in the normal as well as the superconducting state. Results for Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} (Bi2212) show clearly that the tunneling process strongly modifies the STS spectrum from the local density of states (LDOS) of the dx2y2d_{x^2-y^2} orbital of Cu. The dominant tunneling channel to the surface Bi involves the dx2y2d_{x^2-y^2} orbitals of the four neighbouring Cu atoms. In accord with experimental observations, the computed spectrum displays a remarkable asymmetry between the processes of electron injection and extraction, which arises from contributions of Cu dz2d_{z^2} and other orbitals to the tunneling current.Comment: 5 pages, 4 figures, published in PR

    Far-infrared spectra of lateral quantum dot molecules

    Get PDF
    We study effects of electron-electron interactions and confinement potential on the magneto-optical absorption spectrum in the far-infrared range of lateral quantum dot molecules. We calculate far-infrared (FIR) spectra for three different quantum dot molecule confinement potentials. We use accurate exact diagonalization technique for two interacting electrons and calculate dipole-transitions between two-body levels with perturbation theory. We conclude that the two-electron FIR spectra directly reflect the symmetry of the confinement potential and interactions cause only small shifts in the spectra. These predictions could be tested in experiments with nonparabolic quantum dots by changing the number of confined electrons. We also calculate FIR spectra for up to six noninteracting electrons and observe some additional features in the spectrum.Comment: For better quality Figs download manuscript from http://www.fyslab.hut.fi/~mma/FIR/Helle_qdmfir.ps.g

    Towards efficient modelling of optical micromanipulation of complex structures

    Get PDF
    Computational methods for electromagnetic and light scattering can be used for the calculation of optical forces and torques. Since typical particles that are optically trapped or manipulated are on the order of the wavelength in size, approximate methods such as geometric optics or Rayleigh scattering are inapplicable, and solution or either the Maxwell equations or the vector Helmholtz equation must be resorted to. Traditionally, such solutions were only feasible for the simplest geometries; modern computational power enable the rapid solution of more general--but still simple--geometries such as axisymmetric, homogeneous, and isotropic scatterers. However, optically-driven micromachines necessarily require more complex geometries, and their computational modelling thus remains in the realm of challenging computational problems. We review our progress towards efficient computational modelling of optical tweezers and micromanipulation, including the trapping and manipulation of complex structures such as optical micromachines. In particular, we consider the exploitation of symmetry in the modelling of such devices.Comment: 5 pages, 4 figure

    Circular dichroism of cholesteric polymers and the orbital angular momentum of light

    Get PDF
    We explore experimentally if the light's orbital angular momentum (OAM) interacts with chiral nematic polymer films. Specifically, we measure the circular dichroism of such a material using light beams with different OAM. We investigate the case of strongly focussed, non-paraxial light beams, where the spatial and polarization degrees of freedom are coupled. Within the experimental accuracy, we cannot find any influence of the OAM on the circular dichroism of the cholesteric polymer.Comment: 3 pages, 4 figure

    Dynamics of Spreading of Chainlike Molecules with Asymmetric Surface Interactions

    Full text link
    In this work we study the spreading dynamics of tiny liquid droplets on solid surfaces in the case where the ends of the molecules feel different interactions with respect to the surface. We consider a simple model of dimers and short chainlike molecules that cannot form chemical bonds with the surface. We use constant temperature Molecular Dynamics techniques to examine in detail the microscopic structure of the time dependent precursor film. We find that in some cases it can exhibit a high degree of local order that can persist even for flexible chains. Our model also reproduces the experimentally observed early and late-time spreading regimes where the radius of the film grows proportional to the square root of time. The ratios of the associated transport coefficients are in good overall agreement with experiments. Our density profiles are also in good agreement with measurements on the spreading of molecules on hydrophobic surfaces.Comment: 12 pages, LaTeX with APS macros, 21 figures available by contacting [email protected], to appear in Phys. Rev.

    Modelling optical micro-machines

    Get PDF
    A strongly focused laser beam can be used to trap, manipulate and exert torque on a microparticle. The torque is the result of transfer of angular momentum by scattering of the laser beam. The laser could be used to drive a rotor, impeller, cog wheel or some other microdevice of a few microns in size, perhaps fabricated from a birefringent material. We review our methods of computationally simulating the torque and force imparted by a laser beam. We introduce a method of hybridizing the T-matrix with the Finite Difference Frequency Domain (FDFD) method to allow the modelling of materials that are anisotropic and inhomogeneous, and structures that have complex shapes. The high degree of symmetry of a microrotor, such as discrete or continuous rotational symmetry, can be exploited to reduce computational time and memory requirements by orders of magnitude. This is achieved by performing calculations for only a given segment or plane that is repeated across the whole structure. This can be demonstrated by modelling the optical trapping and rotation of a cube.Comment: 4 pages, 3 figure

    Optical application and measurement of torque on microparticles of isotropic nonabsorbing material

    Get PDF
    We show how it is possible to controllably rotate or align microscopic particles of isotropic nonabsorbing material in a TEM00 Gaussian beam trap, with simultaneous measurement of the applied torque using purely optical means. This is a simple and general method of rotation, requiring only that the particle is elongated along one direction. Thus, this method can be used to rotate or align a wide range of naturally occurring particles. The ability to measure the applied torque enables the use of this method as a quantitative tool--the rotational equivalent of optical tweezers based force measurement. As well as being of particular value for the rotation of biological specimens, this method is also suitable for the development of optically-driven micromachines.Comment: 8 pages, 6 figure
    corecore