11,508 research outputs found

    Requirements for contractility in disordered cytoskeletal bundles

    Full text link
    Actomyosin contractility is essential for biological force generation, and is well understood in highly organized structures such as striated muscle. Additionally, actomyosin bundles devoid of this organization are known to contract both in vivo and in vitro, which cannot be described by standard muscle models. To narrow down the search for possible contraction mechanisms in these systems, we investigate their microscopic symmetries. We show that contractile behavior requires non-identical motors that generate large enough forces to probe the nonlinear elastic behavior of F-actin. This suggests a role for filament buckling in the contraction of these bundles, consistent with recent experimental results on reconstituted actomyosin bundles.Comment: 10 pages, 6 figures; text shortene

    Contractile units in disordered actomyosin bundles arise from F-actin buckling

    Full text link
    Bundles of filaments and motors are central to contractility in cells. The classic example is striated muscle, where actomyosin contractility is mediated by highly organized sarcomeres which act as fundamental contractile units. However, many contractile bundles in vivo and in vitro lack sarcomeric organization. Here we propose a model for how contractility can arise in actomyosin bundles without sarcomeric organization and validate its predictions with experiments on a reconstituted system. In the model, internal stresses in frustrated arrangements of motors with diverse velocities cause filaments to buckle, leading to overall shortening. We describe the onset of buckling in the presence of stochastic actin-myosin detachment and predict that buckling-induced contraction occurs in an intermediate range of motor densities. We then calculate the size of the "contractile units" associated with this process. Consistent with these results, our reconstituted actomyosin bundles contract at relatively high motor density, and we observe buckling at the predicted length scale.Comment: 5 pages, 4 figures, Supporting text and movies attache

    Scaling Invariance in a Time-Dependent Elliptical Billiard

    Full text link
    We study some dynamical properties of a classical time-dependent elliptical billiard. We consider periodically moving boundary and collisions between the particle and the boundary are assumed to be elastic. Our results confirm that although the static elliptical billiard is an integrable system, after to introduce time-dependent perturbation on the boundary the unlimited energy growth is observed. The behaviour of the average velocity is described using scaling arguments

    Quark confinement and color transparency in a gauge-invariant formulation of QCD

    Get PDF
    We examine a nonlocal interaction that results from expressing the QCD Hamiltonian entirely in terms of gauge-invariant quark and gluon fields. The interaction couples one quark color-charge density to another, much as electric charge densities are coupled to each other by the Coulomb interaction in QED. In QCD, this nonlocal interaction also couples quark color-charge densities to gluonic color. We show how the leading part of the interaction between quark color-charge densities vanishes when the participating quarks are in a color singlet configuration, and that, for singlet configurations, the residual interaction weakens as the size of a packet of quarks shrinks. Because of this effect, color-singlet packets of quarks should experience final state interactions that increase in strength as these packets expand in size. For the case of an SU(2) model of QCD based on the {\em ansatz} that the gauge-invariant gauge field is a hedgehog configuration, we show how the infinite series that represents the nonlocal interaction between quark color-charge densities can be evaluated nonperturbatively, without expanding it term-by-term. We discuss the implications of this model for QCD with SU(3) color and a gauge-invariant gauge field determined by QCD dynamics.Comment: Revtex, 23 pages; contains additional references with brief comments on sam

    The Prediction of Mass of Z'-Boson from bq0bq0barb_q^0-b_q^0 bar Mixing

    Full text link
    B_q^0-B_^0 bar mixing offers a profound probe into the effects of new physics beyond the Standard Model. In this paper, Bs0Bs0barB_s^0-B_s^0 bar and Bd0Bd0barB_d^0-B_d^0 bar mass differences are considered taking the effect of both Z-and Z' -mediated flavour-changing neutral currents in the Bq0Bq0barB_q^0-B_q^0 bar mixing (q = d, s). Our estimated mass of Z' boson is accessible at the experiments LHC and B-factories in near future.Comment: 11 pages, 02 Figure

    Stopping Light All-Optically

    Full text link
    We show that light pulses can be stopped and stored all-optically, with a process that involves an adiabatic and reversible pulse bandwidth compression occurring entirely in the optical domain. Such a process overcomes the fundamental bandwidth-delay constraint in optics, and can generate arbitrarily small group velocities for light pulses with a given bandwidth, without the use of any coherent or resonant light-matter interactions. We exhibit this process in optical resonator systems, where the pulse bandwidth compression is accomplished only by small refractive index modulations performed at moderate speeds. (Accepted for publication in Phys. Rev. Lett. Submitted on Sept. 10th 2003)Comment: 18 pages including 3 figures. Accepted for publication in Phys. Rev. Let

    Quantum Electrodynamics in the Light-Front Weyl Gauge

    Full text link
    We examine QED(3+1) quantised in the `front form' with finite `volume' regularisation, namely in Discretised Light-Cone Quantisation. Instead of the light-cone or Coulomb gauges, we impose the light-front Weyl gauge A=0A^-=0. The Dirac method is used to arrive at the quantum commutation relations for the independent variables. We apply `quantum mechanical gauge fixing' to implement Gau{\ss}' law, and derive the physical Hamiltonian in terms of unconstrained variables. As in the instant form, this Hamiltonian is invariant under global residual gauge transformations, namely displacements. On the light-cone the symmetry manifests itself quite differently.Comment: LaTeX file, 30 pages (A4 size), no figures. Submitted to Physical review D. January 18, 1996. Originally posted, erroneously, with missing `Weyl' in title. Otherwise, paper is identica

    Extinctions and Correlations for Uniformly Discrete Point Processes with Pure Point Dynamical Spectra

    Full text link
    The paper investigates how correlations can completely specify a uniformly discrete point process. The setting is that of uniformly discrete point sets in real space for which the corresponding dynamical hull is ergodic. The first result is that all of the essential physical information in such a system is derivable from its nn-point correlations, n=2,3,>...n= 2, 3, >.... If the system is pure point diffractive an upper bound on the number of correlations required can be derived from the cycle structure of a graph formed from the dynamical and Bragg spectra. In particular, if the diffraction has no extinctions, then the 2 and 3 point correlations contain all the relevant information.Comment: 16 page

    Quantum Mechanics of the Vacuum State in Two-Dimensional QCD with Adjoint Fermions

    Get PDF
    A study of two-dimensional QCD on a spatial circle with Majorana fermions in the adjoint representation of the gauge groups SU(2) and SU(3) has been performed. The main emphasis is put on the symmetry properties related to the homotopically non-trivial gauge transformations and the discrete axial symmetry of this model. Within a gauge fixed canonical framework, the delicate interplay of topology on the one hand and Jacobians and boundary conditions arising in the course of resolving Gauss's law on the other hand is exhibited. As a result, a consistent description of the residual ZNZ_N gauge symmetry (for SU(N)) and the ``axial anomaly" emerges. For illustrative purposes, the vacuum of the model is determined analytically in the limit of a small circle. There, the Born-Oppenheimer approximation is justified and reduces the vacuum problem to simple quantum mechanics. The issue of fermion condensates is addressed and residual discrepancies with other approaches are pointed out.Comment: 44 pages; for hardcopies of figures, contact [email protected]
    corecore