47,400 research outputs found
Evaluating Distributed Time-Varying Generation Through a Multiobjective Index
In the last decade, distributed generation, with its various technologies, has increased its presence in the energy mix presenting distribution networks with challenges in terms of evaluating the technical impacts that require a wide range of network operational effects to be qualified and quantified. The inherent time-varying behavior of demand and distributed generation (particularly when renewable sources are used), need to be taken into account since considering critical scenarios of loading and generation may mask the impacts. One means of dealing with such complexity is through the use of indices that indicate the benefit or otherwise of connections at a given location and for a given horizon. This paper presents a multiobjective performance index for distribution networks with time-varying distributed generation which consider a number of technical issues. The approach has been applied to a medium voltage distribution network considering hourly demand and wind speeds. Results show that this proposal has a better response to the natural behavior of loads and generation than solely considering a single operation scenario
Drift rate control of a Brownian processing system
A system manager dynamically controls a diffusion process Z that lives in a
finite interval [0,b]. Control takes the form of a negative drift rate \theta
that is chosen from a fixed set A of available values. The controlled process
evolves according to the differential relationship dZ=dX-\theta(Z) dt+dL-dU,
where X is a (0,\sigma) Brownian motion, and L and U are increasing processes
that enforce a lower reflecting barrier at Z=0 and an upper reflecting barrier
at Z=b, respectively. The cumulative cost process increases according to the
differential relationship d\xi =c(\theta(Z)) dt+p dU, where c(\cdot) is a
nondecreasing cost of control and p>0 is a penalty rate associated with
displacement at the upper boundary. The objective is to minimize long-run
average cost. This problem is solved explicitly, which allows one to also solve
the following, essentially equivalent formulation: minimize the long-run
average cost of control subject to an upper bound constraint on the average
rate at which U increases. The two special problem features that allow an
explicit solution are the use of a long-run average cost criterion, as opposed
to a discounted cost criterion, and the lack of state-related costs other than
boundary displacement penalties. The application of this theory to power
control in wireless communication is discussed.Comment: Published at http://dx.doi.org/10.1214/105051604000000855 in the
Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute
of Mathematical Statistics (http://www.imstat.org
Evaluating distributed generation impacts with a multiobjective index
Evaluating the technical impacts associated with connecting distributed generation to distribution networks is a complex activity requiring a wide range of network operational and security effects to be qualified and quantified. One means of dealing with such complexity is through the use of indices that indicate the benefit or otherwise of connections at a given location and which could be used to shape the nature of the contract between the utility and distributed generator. This paper presents a multiobjective performance index for distribution networks with distributed generation which considers a wide range of technical issues. Distributed generation is extensively located and sized within the IEEE-34 test feeder, wherein the multiobjective performance index is computed for each configuration. The results are presented and discussed
Continental and oceanic crustal magnetization modelling
Inversion of magnetic data from the MAGSAT satellite, to arrive at intensities of magnetization of the Earth's crust, was performed by two different methods. The first method uses a spherical harmonic model of the magnetic field. The coefficients believed to represent sources in the Earth's crust can then be inverted to arrive at vertical dipole moments per unit area at the Earth's surface. The spherical harmonic models contain coefficients of degrees of harmonics up to 23. The dipole moment per unit area for a surface element can then be determined by summing the contribution for each individual degree of harmonic. The magnetic moments were calculated for continental and oceanic areas separately as well as over certain latitudinal segments. Of primary concern was to determine whether there are any differences between continental and oceanic areas. The second analysis with magnetization intensities was made using narrower ranges of degrees of harmonics, assuming that higher degrees are present in the core field signal
Effect of strain on the orbital and magnetic ordering of manganite thin films and their interface with an insulator
We study the effect of uniform uniaxial strain on the ground state electronic
configuration of a thin film manganite. Our model Hamiltonian includes the
double-exchange, the Jahn-Teller electron-lattice coupling, and the
antiferromagnetic superexchange. The strain arises due to the lattice mismatch
between an insulating substrate and a manganite which produces a tetragonal
distortion. This is included in the model via a modification of the hopping
amplitude and the introduction of an energy splitting between the Mn e_g
levels. We analyze the bulk properties of half-doped manganites and the
electronic reconstruction at the interface between a ferromagnetic and metallic
manganite and the insulating substrate. The strain drives an orbital selection
modifying the electronic properties and the magnetic ordering of manganites and
their interfaces.Comment: 8 pages, 8 figure
A new quantum fluid at high magnetic fields in the marginal charge-density-wave system -(BEDT-TTF)Hg(SCN) (where ~K and Rb)
Single crystals of the organic charge-transfer salts
-(BEDT-TTF)Hg(SCN) have been studied using Hall-potential
measurements (K) and magnetization experiments ( = K, Rb). The data show
that two types of screening currents occur within the high-field,
low-temperature CDW phases of these salts in response to time-dependent
magnetic fields. The first, which gives rise to the induced Hall potential, is
a free current (), present at the surface of the sample.
The time constant for the decay of these currents is much longer than that
expected from the sample resistivity. The second component of the current
appears to be magnetic (), in that it is a microscopic,
quasi-orbital effect; it is evenly distributed within the bulk of the sample
upon saturation. To explain these data, we propose a simple model invoking a
new type of quantum fluid comprising a CDW coexisting with a two-dimensional
Fermi-surface pocket which describes the two types of current. The model and
data are able to account for the body of previous experimental data which had
generated apparently contradictory interpretations in terms of the quantum Hall
effect or superconductivity.Comment: 13 pages, 11 figure
An improved method of utilising strychine in the preparation of dingo and fox baits
AT present dingo and fox baits are made from fat or other material attractive to the animal to be poisoned, into which is inserted either alkaloid or soluble strychnine
Origin of electron-hole asymmetry in the scanning tunneling spectrum of
We have developed a material specific theoretical framework for modelling
scanning tunneling spectroscopy (STS) of high temperature superconducting
materials in the normal as well as the superconducting state. Results for
(Bi2212) show clearly that the tunneling process
strongly modifies the STS spectrum from the local density of states (LDOS) of
the orbital of Cu. The dominant tunneling channel to the surface
Bi involves the orbitals of the four neighbouring Cu atoms. In
accord with experimental observations, the computed spectrum displays a
remarkable asymmetry between the processes of electron injection and
extraction, which arises from contributions of Cu and other orbitals
to the tunneling current.Comment: 5 pages, 4 figures, published in PR
Theoretical investigation of magnetoelectric effects in Ba2CoGe2O7
A joint theoretical approach, combining macroscopic symmetry analysis with
microscopic methods (density functional theory and model cluster Hamiltonian),
is employed to shed light on magnetoelectricity in Ba2CoGe2O7. We show that the
recently reported experimental trend of polarization guided by magnetic field
can be predicted on the basis of phenomenological Landau theory. From the
microscopic side, Ba2CoGe2O7 emerges as a prototype of a class of
magnetoelectrics, where the cross coupling between magnetic and dipolar degrees
of freedom needs, as main ingredients, the on-site spin-orbit coupling and the
spin-dependent O p - Co d hybridization, along with structural constraints
related to the noncentrosymmetric structural symmetry and the peculiar
configuration of CoO4 tetrahedrons.Comment: 5 pages, 4 figures, submitted for publicatio
Epitaxial strain effects in the spinel ferrites CoFe2O4 and NiFe2O4 from first principles
The inverse spinels CoFe2O4 and NiFe2O4, which have been of particular
interest over the past few years as building blocks of artificial multiferroic
heterostructures and as possible spin-filter materials, are investigated by
means of density functional theory calculations. We address the effect of
epitaxial strain on the magneto-crystalline anisotropy and show that, in
agreement with experimental observations, tensile strain favors perpendicular
anisotropy, whereas compressive strain favors in-plane orientation of the
magnetization. Our calculated magnetostriction constants of
about -220 ppm for CoFe2O4 and -45 ppm for NiFe2O4 agree well with available
experimental data. We analyze the effect of different cation arrangements used
to represent the inverse spinel structure and show that both LSDA+U and GGA+U
allow for a good quantitative description of these materials. Our results open
the way for further computational investigations of spinel ferrites
- …