20,296 research outputs found

    The significance of ACTH for the process of formation of complex heparin compounds in the blood during immobilization stress

    Get PDF
    Adrenocorticotropin (ACTH) was administered to rats at different times following adrenalectomy. Adrenocorticotropin caused a significant increase in the formation of heparin complexes even in the absence of stress factor. When ACTH secretion is blocked, immobilization stress is not accompanied by an increase in the process of complex formation. The effect of ACTH on the formation of heparin complexes was mediated through its stimulation of the adrenal cortex

    The role of ACTH and glucocorticoids in nonenzymatic fibrinolysis during immobilization stress in animals

    Get PDF
    The role of the altered hormonal status of an organism in the activation of the anticoagulative system during stress is investigated. The 30 minute immobilization stress was shown to raise significantly the nonenzymatic fibrinolytic activity of blood in rats. Combined with adrenocorticotropin (ACTH) the effect is still greater. Intravenous administration of 0.2 m1 0.01 percent solution of protamine sulphate prevented the nonenzymatic fibrinolysis induced by the stress. Administration of ACTH after protomine sulphate again raised the fibrinolysis. This suggests that ACTH stimulates the release of heparin

    The effects of adrenalectomy and corticsteroid injection on the fibrinolytic activity of complex heparin compounds in the blood during immobilization

    Get PDF
    Total non-enzymatic fibrinolytic activity in the blood of rats increased three times in response to stress caused by 30 minute immobilization, and the activity of epinephrine-heparin complex increased nine times. In adrenalectomized animals, which showed a weak response to the same stress, intraperitoneal injection of hydrocortisone 30 minutes prior to immobilization normalized the response. Obtained results indicate that adrenalectomy leads to sharp reduction of heparin complexing with thromogenic proteins and epinephrine, while substitution therapy with hydrocortisone restores anticoagulation system function

    Importance of cooling in triggering the collapse of hypermassive neutron stars

    Full text link
    The inspiral and merger of a binary neutron star (NSNS) can lead to the formation of a hypermassive neutron star (HMNS). As the HMNS loses thermal pressure due to neutrino cooling and/or centrifugal support due to gravitational wave (GW) emission, and/or magnetic breaking of differential rotation it will collapse to a black hole. To assess the importance of shock-induced thermal pressure and cooling, we adopt an idealized equation of state and perform NSNS simulations in full GR through late inspiral, merger, and HMNS formation, accounting for cooling. We show that thermal pressure contributes significantly to the support of the HMNS against collapse and that thermal cooling accelerates its "delayed" collapse. Our simulations demonstrate explicitly that cooling can induce the catastrophic collapse of a hot hypermassive neutron star formed following the merger of binary neutron stars. Thus, cooling physics is important to include in NSNS merger calculations to accurately determine the lifetime of the HMNS remnant and to extract information about the NS equation of state, cooling mechanisms, bar instabilities and B-fields from the GWs emitted during the transient phase prior to BH formation.Comment: 13 pages, 7 figures, matches published versio

    Complete transfer of populations from a single state to a pre-selected superposition of states using Piecewise Adiabatic Passage

    Full text link
    We develop a method for executing robust and selective transfer of populations between a single level and pre-selected superpositions of energy eigenstates. Viewed in the frequency domain, our method amounts to executing a series of simultaneous adiabatic passages into each component of the target superposition state. Viewed in {the} time domain, the method works by accumulating the wavefunction of the target wave packet as it revisits the Franck Condon region, in what amounts to an extension of the Piecewise Adiabatic Passage technique [ Shapiro et.al., Phys. Rev. Lett. 99, 033002 (2007)] to the multi-state regime. The viability of the method is verified by performing numerical tests for the Na_2 molecule.Comment: 8 pages, 4 figure

    Anderson localization of a Bose-Einstein condensate in a 3D random potential

    Full text link
    We study the effect of Anderson localization on the expansion of a Bose-Einstein condensate, released from a harmonic trap, in a 3D random potential. We use scaling arguments and the self-consistent theory of localization to show that the long-time behavior of the condensate density is controlled by a single parameter equal to the ratio of the mobility edge and the chemical potential of the condensate. We find that the two critical exponents of the localization transition determine the evolution of the condensate density in time and space.Comment: 4 pages, 2 figure

    Scaling of the conductance distribution near the Anderson transition

    Full text link
    The single parameter scaling hypothesis is the foundation of our understanding of the Anderson transition. However, the conductance of a disordered system is a fluctuating quantity which does not obey a one parameter scaling law. It is essential to investigate the scaling of the full conductance distribution to establish the scaling hypothesis. We present a clear cut numerical demonstration that the conductance distribution indeed obeys one parameter scaling near the Anderson transition

    On Useful Conformal Tranformations In General Relativity

    Full text link
    Local conformal transformations are known as a useful tool in various applications of the gravitational theory, especially in cosmology. We describe some new aspects of these transformations, in particular using them for derivation of Einstein equations for the cosmological and Schwarzschild metrics. Furthermore, the conformal transformation is applied for the dimensional reduction of the Gauss-Bonnet topological invariant in d=4d=4 to the spaces of lower dimensions.Comment: 17 pages, LaTeX. The paper is intended mainly for pedagogical purposes and represents a collection of exercises concerning local conformal transformations and dimensional reduction. To be published in "Gravitation and Cosmology

    Model-independent view on the low-mass proton-antiproton enhancement

    Full text link
    We present a simple interpretation of the recently observed near-threshold proton-antiproton enhancement. It is described by a set of low-energy parameters deduced from the analysis of NantiN experiments at LEAR. We predict a related effect in photoproduction reaction under study by CLAS collaboration.Comment: 10 pages, 2 figure
    corecore